AI content

本课程涵盖深度学习的基础,如神经网络和深度学习模型的构建,并深入讲解超参数调优、正则化和优化算法。此外,还涉及机器学习项目结构,数据集划分策略,以及卷积神经网络和序列模型(如RNN和LSTM)在图像和自然语言处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

What u’ll learn

1. Neural Networks and Deep Learning(4 weeks)

in the first course, u’ll learn how to build a Neural Network including a deep neural network, and how to train them on data

2. Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization(3 weeks)

learn about the pratical aspects of Deep Learning, learn narrowly build neural network, how to actually get it perform well. so u’ll learn about hyperparameter tuning, regularization, how to diagnose bias and variance and advanced optimization algorithms like Momentum and Adam algorithm

3. Structuring ur Machine Learning Project(2 weeks)

it turns out that the strategy for building a machine learning system has change the error of deep learning, for example, the way u split data into train, development or diff on most called validation set and test sets has change the error of deep learning

4. Convolutional Neural Networks(4 weeks)

often abbreviated to CNN(s), which are often apply to images

5. Natural Language Processing(NLP):Building sequence models(4 weeks)

sequence model include models like Recurrent Neural Network albbreviated to RNN and LSTM models stands for Long Short Term Memory models

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值