自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 Python 常见库分类介绍及安装方法

编程是 “用进废退” 的技能,哪怕每天只写 10 行代码,哪怕只是把教程里的例子亲手敲一遍,都是在进步。你今天能独立写出一个计算 1 到 100 之和的程序,明天就能在此基础上改出计算偶数和的版本,这种 “一点点变厉害” 的感觉,会越来越爽。Python 的 “简单” 是相对的 —— 它的语法像英语一样好读,但真正用它解决问题,需要慢慢积累 “把想法翻译成代码” 的能力。或许你现在会有点慌:刚记住的语法转头就忘,写几行代码就报错,对着一道简单的题半天没思路……核心语法:变量/数据类型/运算符/流程控制。

2025-07-19 09:21:50 443

原创 Python基础算法练习题

🐍 Python算法入门 | 20道精选练习题Why Python?简洁语法 + 强大库 = 最佳算法初学语言!Why 算法?💡 提升逻辑力 | 🚀 优化代码效率 | 📚 攻克面试核心!你将收获👇✅ 6大主题覆盖:字符串、列表、递归、数据结构、数学逻辑、经典问题✅ 新手友好:从循环调试到算法思维跃迁✅ 附答案解析 → 先思考,再进化!键盘已就绪!用print("Hello, Algorithm!")开启你的思维升级之旅吧✨

2025-07-13 15:34:06 732

原创 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题(完整建模过程附python代码)

本文基于中风(stroke.csv)数据,通过数据预处理、特征分析和建模,探究疾病预测与共病风险。首先对数据进行缺失值填充和分类变量处理,通过可视化分析发现年龄、血糖、BMI等与中风显著相关。随后构建随机森林、逻辑回归等预测模型,采用SHAP进行特征重要性分析。进一步提出多疾病共病建模方法,分析中风、心脏病和肝硬化的联合发病概率。最后为WHO提供分层干预、智能筛查和共病监测等建议,强调高龄、高血压、糖尿病等高风险人群的预防管理。研究为慢性病防控提供了数据支持和决策依据。

2025-07-13 08:29:52 1279

原创 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)A题(完整建模过程附python代码)

本文研究了农业灌溉系统的智能化优化问题。针对土壤湿度预测,建立了随机森林回归模型(R²≈0.85),基于气温、气压等7个气象特征实现了5cm深度湿度的高精度预测。在灌溉系统设计中,采用模拟退火算法优化了喷头布置与管道网络,构建了包含引水管和储水罐的混合系统,总成本最优方案为32万元。针对旱灾情景的应急分析表明,当河水供应下降20%时,储水罐覆盖半径扩大至50m可使85%作物存活。最后提出的月度灌溉方案显示系统供水能力充足,无需调整布线。研究为精准农业灌溉提供了完整的代码

2025-07-12 08:59:13 1359 1

原创 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)C题(完整建模过程附python代码)

本文提出了一种基于QBoost算法的分类器组合优化方法。首先对Iris数据集进行预处理(Z-score标准化和标签转换),并构建多个基于单特征阈值的弱分类器。然后,将分类器组合问题转化为QUBO模型,通过最小化目标函数(包含误差项和正则项)来优化分类器选择。最后使用模拟退火算法求解最优组合,在测试集上评估性能。实验结果表明,该方法可以有效组合弱分类器,提升分类准确率。文中还提供了完整的Python实现代码,包括数据预处理、QUBO矩阵构建、求解和评估等步骤。该方法可扩展到其他分类器组合优化问题

2025-07-11 20:07:59 763

原创 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)C题解题思路(ChatGPT版)

任务目标:使用Iris数据集中的Setosa和Versicolor两类花,通过量子启发的QBoost算法实现分类。核心步骤:数据预处理:标准化特征并划分训练集/测试集。弱分类器设计:生成基于单特征阈值的简单分类器集合。QBoost建模:将集成学习问题转化为QUBO形式,通过量子退火求解。评估:分析模型性能并验证量子方法的有效性。

2025-07-11 19:20:38 688 1

原创 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题解题思路(ChatGPT版)

本文针对三类疾病(中风、心脏病、肝硬化)提出四阶段分析方法:1)数据预处理与统计分析,包括数据清洗、可视化及相关性分析;2)构建个体疾病预测模型,通过特征选择和多种算法优化;3)多疾病关联分析,建立共病预测模型和综合风险评估系统;4)基于分析结果向WHO提出预防建议,包括高危人群筛查和生活方式干预。研究采用统计分析与机器学习相结合的方法,重点解决从数据清洗到政策建议的全流程问题,为多疾病综合防控提供决策支持。

2025-07-11 19:11:47 439 1

原创 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)A题解题思路(ChatGPT版)

本文基于气象数据和土壤湿度数据,完成四个农业灌溉优化问题:(1)建立5cm土壤湿度预测模型,采用随机森林回归(R²=9.4%);(2)设计最小成本灌溉系统,考虑喷头覆盖、管道布线和储水罐优化;(3)分析旱灾应急策略,调整储水罐覆盖半径并评估作物存活率;(4)制定动态月度灌溉计划,验证系统适应性。问题1详细建模过程包括数据预处理(时间对齐、特征选择)、随机森林模型构建(RMSE=0.055)及预测应用,指出可通过引入时序特征和高级模型提升精度。整体解决方案从预测到优化逐步推进,为智能灌溉系统提供决策支持

2025-07-11 19:02:38 821 1

原创 数据可视化9:MATLAB绘制折线图

折线图通过线段连接数据点,直观展示数据随时间或有序变量的变化趋势,适用于趋势分析、多组对比和异常检测。MATLAB中可使用plot函数绘制专业折线图,通过定制线型、颜色、标记点等参数增强可视化效果。示例展示了三组正态分布数据的对比分析,包括数据生成、绘图设置、标签添加等完整步骤。折线图广泛应用于金融、质量监控、医疗研究等领域,是时间序列和趋势分析的首选工具。

2025-07-11 09:18:52 437 1

原创 数据可视化8:MATLAB绘制有向无向图

本文介绍了无向图和有向图的特点及应用。无向图边无方向,适用于对称关系(如社交网络、交通网),用于连通性检测、最小生成树等;有向图边有方向,适用于非对称关系(如网页链接、任务依赖),用于路径优化、状态转换等。通过MATLAB示例展示了两种图的创建和可视化方法,包括权重设置和路径高亮技巧。最后对比了两者的关键区别,强调应根据问题需求(方向性)选择合适的图结构进行建模。

2025-07-10 18:51:15 950 2

原创 数据可视化7:MATLAB绘制堆叠环形柱状图

堆叠环形柱状图结合了堆叠柱状图和环形图的优点,适合展示多层级数据的构成比例及对比不同组别的分布差异。其环形结构直观显示整体与部分关系,堆叠设计可细分数据维度,同时节省空间且美观。文章介绍了MATLAB实现方法,包括数据准备、标签定义、配色方案和绘图步骤,并指出典型应用场景(如市场分析和资源统计)及优缺点。该图表适合层次化数据展示,但需注意避免数据量过大导致的杂乱问题。

2025-07-09 15:54:47 1024 3

原创 数据可视化6:MATLAB绘制带误差棒的柱状图

带误差棒的柱状图是数据可视化的重要工具,能够同时展示数据的集中趋势和离散程度。柱状图高度反映均值等汇总统计量,误差棒则显示标准差或置信区间,直观呈现数据变异性。其主要作用包括:比较不同组间差异、评估数据可靠性、辅助统计推断,以及揭示实验潜在问题。通过观察误差棒重叠情况可初步判断显著性,但需配合统计检验确认。制作时需确保数据包含均值及误差值,使用MATLAB的bar和errorbar函数实现,并可通过调整颜色、标签等属性优化可视化效果。这种图表广泛应用于科研、社会调查和质量控制等领域。

2025-07-08 22:20:40 546

原创 数据可视化5:MATLAB绘制单组箱线图

箱线图是一种用于展示数据分布的统计图表,能够直观反映数据的集中趋势、离散程度和异常值。其核心组成部分包括四分位数(Q1、Q2、Q3)、箱体、须线(上下限)以及异常值标记。箱线图占用空间小,适合多组数据比较,在MATLAB中可通过boxplot函数实现,并可自定义颜色、线宽等参数。

2025-07-08 12:03:01 1393 1

原创 数据可视化4:MATLAB绘制横向堆叠图

横向堆叠图(水平堆叠条形图)是一种展示多分类变量构成比例的数据可视化工具。本文以MATLAB为例,详细介绍了横向堆叠图的绘制方法:使用barh函数实现数据堆叠,通过调整坐标轴方向、设置网格和刻度等参数优化图表样式,并提供了完整的配色方案和代码示例。该图表适用于业务分析、人口统计、资源分配和学术研究等多个领域,能够直观展示数据在不同分类下的分布情况。文中还给出了具体的应用场景说明,包括销售数据、人口结构、预算分配和实验数据等可视化案例。

2025-06-30 15:02:12 355

原创 数据可视化3:MATLAB绘制小提琴图

小提琴图通过结合箱线图和核密度估计,能直观展示多组数据的分布特征、概率密度及统计量。本文以MATLAB为例,演示了绘制步骤:1)生成正态分布示例数据;2)设置图形参数;3)绘制包含核密度曲线、箱线元素(中位数/四分位距)和均值标记的复合图;4)美化图形样式。特别适用于非对称/多峰分布和小样本数据,但需注意样本量限制和组别数量控制。该图表在生物信息学、社会科学等领域具有重要应用价值,尤其适合探索性数据分析。

2025-06-29 15:54:10 693 1

原创 数据可视化2:MATLAB绘制热力图

文章介绍了使用MATLAB绘制热力图的方法。热力图通过颜色梯度呈现数据密度或数值大小,暖色调代表高值,冷色调代表低值。文中详细展示了数据导入、相关系数计算(Pearson方法)以及自定义渐变色谱的创建过程,最终使用heatmap函数实现可视化。示例代码演示了从处理Excel数据到生成包含14种氧化物成分相关性的彩色热力图的完整流程,其中包含自定义颜色映射(蓝紫色系)和格式设置技巧。

2025-06-22 16:04:50 283

原创 MATLAB绘制箱线图

箱线图是一种展示数据分布特征的可视化工具,包含最小值、四分位数、中位数和最大值五个核心统计量。文章详细介绍了箱线图的基本结构,包括箱体(Q1-Q3)和须线(数据范围)的绘制方法,并提供了MATLAB实现代码示例,涵盖数据提取、配色设置、图形参数调整等关键步骤。同时阐述了箱线图在异常值识别(基于1.5IQR规则)和数据对比分析中的实际应用价值,最后给出了多图对比、交互探索等可视化优化建议。箱线图适用于数据分布比较、异常检测和探索性数据分析等多种场景。

2025-06-22 13:29:34 429 1

Python基础算法练习题

里面有350道精心编辑好的算法题

2025-07-13

数据可视化5:MATLAB绘制单组箱线图示例数据

示例代码中的数据

2025-07-08

数据可视化2:MATLAB绘制热力图

源数据

2025-06-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除