2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题解题思路(ChatGPT版)

🧠 问题1:数据预处理与基础统计分析

💡 目标:

对三类疾病的数据集进行清洗、统计分析和可视化,识别出影响发病率的关键因素。

✅ 解题步骤:

  1. 数据清洗

    • 缺失值处理(如bmi、smoking_status的“未知”等)

    • 异常值检测(如负数或极端离群值)

    • 类型转换(将类别变量转为数值变量或哑变量)

  2. 数据可视化与统计描述

    • 用条形图、箱型图、分布图展示特征分布

    • 描述统计分析:均值、中位数、标准差等

    • 分组统计分析(如中风患者 vs 非中风患者)

  3. 相关性分析

    • 计算各特征与发病变量(stroke/heart_disease等)之间的皮尔森/卡方相关性

    • 使用热力图展示变量之间的相关性

  4. 初步结论

    • 列出与每类疾病显著相关的变量(例如高血压与中风强相关)


🔮 问题2:构建不同疾病的预测模型

💡 目标:

建立三个疾病(中风、心脏病、肝硬化)的预测模型,并对模型准确性和鲁棒性进行分析。

✅ 解题步骤:

  1. 特征选择

    • 利用前面统计分析中发现的重要特征

    • 或使用Lasso回归、随机森林等方法进行特征选择

  2. 模型构建(每种疾病分别建模)

    • 常见模型:逻辑回归、决策树、随机森林、XGBoost、神经网络等

    • 分类问题:是否患病为0或1

  3. 模型评估

    • 使用准确率、召回率、F1-score、AUC等指标评估

    • 交叉验证:如K折交叉验证评估泛化能力

    • 混淆矩阵可视化

  4. 灵敏度分析与改进

    • 改变输入变量查看模型敏感度

    • 尝试特征组合、新的算法等手段优化模型


🔗 问题3:多疾病关联与综合风险评估

💡 目标:

分析三种疾病之间的共病情况,构建同时患有两种或三种疾病的概率预测模型。

✅ 解题步骤:

  1. 三类数据整合

    • 尝试构建统一患者 ID 的数据集(如果原数据中没有匹配 ID,可模拟合成数据结构)

    • 或建立统计关联模型(例如两个模型预测结果之间的相关性)

  2. 共病建模

    • 构建一个组合分类模型(输出类别为:只患一种病、两种病、三种病)

    • 可使用多标签分类方法,如多输出逻辑回归、MLP或二元多分类模型

  3. 风险评分系统

    • 为每个患者打分,综合考虑其患病概率

    • 使用权重加权、逻辑回归或机器学习方法评估“健康风险等级”

  4. 关联因素挖掘

    • 通过特征交互分析(如高血压+高血糖与中风+心脏病关系)

    • 使用统计方法分析共病率与特征的关系


📝 问题4:提出预防建议和措施(写给WHO的信)

💡 目标:

将模型和数据分析结果应用于现实政策建议中。

✅ 解题步骤:

  1. 总结模型结果

    • 每种疾病的关键风险因素(如吸烟、年龄、糖尿病等)

  2. 提出干预策略

    • 政策层面:加强高危人群筛查

    • 医疗层面:多疾病共防体系建设

    • 生活方式建议:控糖、控压、戒烟、锻炼等

  3. 写作建议信

    • 用专业、简洁、科学的语言表达

    • 建议格式:引言(说明背景)+ 研究发现 + 具体建议 + 结语


📌 总结建议:

问题重点方法建议
问题1数据清洗和初步分析可视化 + 统计方法
问题2构建预测模型逻辑回归/随机森林/XGBoost
问题3共病分析与综合评估多标签分类 + 风险打分
问题4建议信写作结合模型结果写出可行建议
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值