包含全部问题分析和第一问具体代码建模
✅ 总体任务概述
使用Iris数据集中前两类花(Setosa和Versicolor),通过以下流程实现分类:
-
构建若干个基于简单规则的弱分类器;
-
将分类任务形式化为一个 QUBO模型;
-
使用**Kaiwu SDK(模拟退火器)**求解,得到最终分类器,并进行性能分析。
🧩 问题1:数据预处理与弱分类器构建
🔹步骤1:加载与预处理
-
使用Iris数据集中Setosa (0) 和 Versicolor (1) 两类,共100个样本。
-
每个样本4个特征:
-
sepal length(萼片长度)
-
sepal width(萼片宽度)
-
petal length(花瓣长度)
-
petal width(花瓣宽度)
-
🔹步骤2:预处理建议
-
标准化(如 Z-score:mean=0, std=1)或归一化(0-1)
-
随机划分训练集与测试集,如 80/20 分
🔹步骤3:弱分类器设计
-
构造 MMM 个基于简单规则的弱分类器,例如:
-
单特征 + 阈值(如:petal length > 2.5 → 类别1,否则类别0)
-
两个特征组合的线性规则(如:a·feature1 + b·feature2 > threshold)
-
-
将每个弱分类器输出转化为 {−1,+1}\{-1, +1\}{−1,+1}
-
记录每个分类器在训练集上的准确率
🧩 问题2:QBoost建模与QUBO转化
🔹QBoost思想
-
与传统Boosting不同,QBoost将弱分类器的选择转化为一个 QUBO问题(Quadratic Unconstrained Binary Optimization)。
-
每个弱分类器是否被选中由一个二进制变量 zj∈{0,1}z_j \in \{0, 1\}zj∈{0,1} 表示。
🔹目标函数设计
-
最小化分类误差 + 正则化项(避免过拟合,限制选择分类器数量):
minz∥y−∑j=1Mzj⋅hj(x)∥2+λ⋅∑j=1Mzj\min_{\mathbf{z}} \left\| \mathbf{y} - \sum_{j=1}^M z_j \cdot h_j(\mathbf{x}) \right\|^2 + \lambda \cdot \sum_{j=1}^M z_jzminy−j=1∑Mzj⋅hj(x)2+λ⋅j=1∑Mzj
其中:
-
y∈{−1,1}N\mathbf{y} \in \{-1, 1\}^Ny∈{−1,1}N 是训练样本的真实标签;
-
hj(x)h_j(\mathbf{x})hj(x) 是第 j 个弱分类器的预测结果;
-
zj∈{0,1}z_j \in \{0, 1\}zj∈{0,1} 是变量(是否选择该分类器);
-
λ\lambdaλ 是正则化参数。
🔹转换为QUBO形式
目标函数变换为标准 QUBO 形式:
minz z⊤Qz+c⊤z\min_{\mathbf{z}} \ \mathbf{z}^\top Q \mathbf{z} + \mathbf{c}^\top \mathbf{z}zmin z⊤Qz+c⊤z
-
QQQ 为二次项矩阵;
-
ccc 为一次项向量;
-
由误差平方项和正则项组合得到。
🧩 问题3:求解与模型评估(使用Kaiwu SDK)
🔹模拟退火求解
-
使用 Kaiwu SDK(量子模拟平台)提供的模拟退火器;
-
输入构建好的 QUBO 参数 QQQ、ccc,得到最优解 z∗\mathbf{z^*}z∗;
-
得到被选中的弱分类器集合。
🔹模型分析
-
分析所选分类器的特征、阈值、组合逻辑;
-
比较训练集与测试集的准确率;
-
可进一步使用指标如:
-
精确率(Precision)、召回率(Recall)、F1 分数;
-
混淆矩阵;
-
ROC/AUC曲线(如果有必要)
-
🧪 实验与性能分析建议
-
对不同正则参数 λ\lambdaλ 进行实验对比;
-
分析弱分类器数量与准确率的关系;
-
验证是否过拟合(训练集高准确但测试集下降);
-
可尝试扩展特征工程(如PCA降维、特征交叉)观察效果变化。
第一问建模
🧩 步骤1:数据加载与预处理
📌 内容:
-
加载Iris数据集(
sklearn.datasets.load_iris()
) -
选取前两类数据(Setosa 和 Versicolor)
-
特征标准化(Z-score)
-
划分训练集与测试集(如 80%:20%)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pd
# 加载数据
iris = load_iris()
X = iris.data
y = iris.target
# 只保留 Setosa(0) 和 Versicolor(1)
X = X[y < 2]
y = y[y < 2]
# 标签映射为 {-1, 1}
y = np.where(y == 0, -1, 1)
# 标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
print("训练集样本数:", len(X_train))
🧩 步骤2:弱分类器设计
📌 弱分类器定义:
使用以下两种方法生成 MMM 个弱分类器:
-
单特征+阈值型:
feature_j > t
判定为 +1 否则为 -1 -
两个特征线性组合:
a * feature_j + b * feature_k > t
判定为 +1 否则为 -1
我们可以枚举所有特征组合与多个阈值,构造出一组简单分类器。
def generate_weak_classifiers(X, num_thresholds=5):
n_samples, n_features = X.shape
classifiers = []
thresholds = np.linspace(-2, 2, num_thresholds) # 选取几个常规阈值
for feature_idx in range(n_features):
for t in thresholds:
def classifier(x, idx=feature_idx, threshold=t):
return 1 if x[idx] > threshold else -1
classifiers.append(classifier)
return classifiers
# 构建弱分类器集合
weak_classifiers = generate_weak_classifiers(X_train)
print(f"弱分类器总数:{len(weak_classifiers)}")
🧩 步骤3:记录每个弱分类器在训练集上的预测与准确率
def evaluate_classifiers(classifiers, X, y):
n_classifiers = len(classifiers)
n_samples = len(y)
H = np.zeros((n_classifiers, n_samples)) # 记录每个分类器的预测结果
accuracies = []
for j, clf in enumerate(classifiers):
predictions = np.array([clf(x) for x in X])
H[j] = predictions
acc = np.mean(predictions == y)
accuracies.append(acc)
return H, np.array(accuracies)
H_train, acc_train = evaluate_classifiers(weak_classifiers, X_train, y_train)
# 展示前5个分类器的准确率
for i in range(5):
print(f"分类器 {i+1} 的训练准确率:{acc_train[i]:.2f}")
✅ 总结:问题1已完成内容
模块 | 说明 |
---|---|
✅ 数据选择 | 选取Setosa与Versicolor类,共100样本 |
✅ 数据预处理 | 标准化特征 + 划分训练/测试集 |
✅ 弱分类器构建 | 构造M个基于特征阈值的简单分类器 |
✅ 输出预测结果 | 记录每个弱分类器对训练集的预测 |
✅ 准确率计算 | 计算每个弱分类器在训练集上的准确率 |