目录
1 反演模型建立
本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,基于多元回归分析,由MODIS遥感影像反演长时间序列的水体叶绿素(Chl-a)含量的方法。
本文将基于论文《基于GEE的中国南海水质反演与富营养化评价》中使用的多元回归公式,由MODIS遥感地表反射率数据(MOD09GA数据产品)反演水体叶绿素含量。在本文中,以杭州湾地区为例,反演其在2022年4个季节中,叶绿素含量的季节平均值。
首先,在上述这一论文中,对水体叶绿素含量的反演公式描述如下所示,在研究中,通过比较不同模型的拟合效果,综合考虑了R2(决定系数)和RMSE(均方根误差)来选择最佳的反演模型。以下是各个参数的反演模型及其效果:
-
SD(悬浮物浓度)模型:
-
选择的模型为:SD=1027.7(B02)2−134.71(B02)+5.9348
-
该模型的R2为0.638,RMSE为0.551,表明模型具有较好的一致性和准确性。
-
-
TN(总氮)模型:
-
拟合效果最好的模型是基于SD、B01、B02、B03的多元变量非线性拟合,拟合方程为: TN=−0.000077916(SD)2−0.381(B01)+0.088(B02)+0.033(B03)+0.027
-
-
COD(化学需氧量)模型