基于 GEE 的城市热岛效应分析——可视化地表温度 LST 与归一化植被指数 NDVI 的关联

目录

1 前言

2 研究方法及数据处理

3 完整代码

4 运行结果


1 前言

随着全球气候变化的不断加剧,城市热岛效应逐渐成为了城市可持续发展中的重大挑战之一。城市热岛效应是指城市区域内由于人为活动、建筑材料、地面铺装方式等因素导致的温度明显高于周边郊区的现象。这种效应不仅对城市居民的舒适度造成了显著影响,还可能加剧能源消耗、空气污染,甚至对公共健康产生威胁。因此,研究城市地表温度(Land Surface Temperature,简称 LST)及其与归一化植被指数(Normalized Difference Vegetation Index,简称 NDVI)的关系,成为了当前城市环境研究领域的重要课题。

因此本文分享通过遥感技术,基于 Google Earth Engine 平台与 Landsat 8 卫星影像,分析研究区 2020 年 4 月至 7 月期间的地表温度特征,并进一步探讨地表温度与植被指数之间的关系。

2 研究方法及数据处理

(1)NDVI 计算:NDVI 是植被覆盖状况的重要指标,计算公式为:(NIR - Red) / (NIR + Red),其中 NIR 为近红外波段(波段 5),Red 为红波段(波段 4),较高的 NDVI 值通常表示更丰富的植被覆盖。

(2)地表发射率估算:地表发射率是计算地表温度的重要参数之一,本研究根据 NDVI 估算地表发射率,采用的经验公式为:发射率 = NDVI × 0.0003342 + 0.1。

(3)地表温度(LST)推算:通过 Landsat 8 热红外波段(波段 10),首先将影像的数字量值(DN)转换为辐射亮度,然后根据亮度推算亮温,最后考虑地表发射率的修正,得到实际地表温度。具体的计算过程包括以下步骤:

①将 DN 值转换为辐射亮度;

②根据 Landsat 8 提供的校准常数,进一步转换为亮温(摄氏度);

③利用发射率和亮温推算实际地表温度。

本文利用皮尔逊相关系数Pearson correlation coefficient)方法,进一步分析了 NDVILST 之间的相关性。结果显示,两者之间存在明显的负相关趋势,即植被覆盖越高的区域,地表温度越低。这充分证明了植被对城市热岛效应的显著缓解作用。

通过进一步采样分析,建立了 NDVILST 的散点图,直观展示相关趋势,进一步凸显了植被在调节城市生态环境方面的重要价值。

为了更好地展示结果,可以在代码运行后点击“选择地图”分别查看不同区域的地表温度分布和植被覆盖情况。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值