基于 GEE 的研究区 1948—2024 年蒸散 ET 年际变化分析

目录

1 代码解析

1.1 地理区域设定

1.2 数据获取

1.3 计算年蒸散量

1.4 生成年蒸散量图像集合

1.5 数据导出

1.6 绘制年际变化图表

2 完整代码

3 运行结果


1 代码解析

1.1 地理区域设定

var geometry = table; 
Map.centerObject(geometry, 6);

这部分代码把 table 赋值给 geometry,并且将地图中心定位到这个区域,缩放级别设为 6。

1.2 数据获取

var dataset1 = ee.ImageCollection("NASA/GLDAS/V20/NOAH/G025/T3H");
var dataset2 = ee.ImageCollection("NASA/GLDAS/V021/NOAH/G025/T3H");

这里我们从 GEE 的数据仓库里获取了两个不同版本的 GLDAS 数据集,它们包含了蒸散量相关的数据。

1.3 计算年蒸散量

var getAnnualET = function(year, dataset) {
  var startDate = ee.Date.fromYMD(year, 1, 1);
  var endDate = ee.Date.fromYMD(year, 12, 31);
  
  return dataset.filterDate(startDate, endDate)
    .select('Evap_tavg')
    .sum()
    .multiply(10800)
    .clip(geometry)
    .set('year', year);
};

getAnnualET 函数用于计算指定年份的年蒸散量。它先确定该年份的起始和结束日期,接着筛选出对应时间段的数据,选取蒸散量平均值这一波段,把该年的蒸散量数据累加起来,再乘以 10800 进行单位换算,最后裁剪到指定的地理区域,并给结果图像设置年份属性。

1.4 生成年蒸散量图像集合

var years1 = ee.List.sequence(1948, 1999);
var years2 = ee.List.sequence(2000, 2024);

var annualImages = ee.ImageCollection.fromImages(
  years1.map(function(y) { return getAnnualET(y, dataset1); })
  .cat(years2.map(function(y) { return getAnnualET(y, dataset2); }))
);

我们把 1948 - 1999 年和 2000 - 2024 年分成两个时间段,分别调用 getAnnualET 函数计算每年的蒸散量,最后把这些结果合并成一个图像集合。

1.5 数据导出

years1.cat(years2).getInfo().forEach(function(year) {
  var image = annualImages.filter(ee.Filter.eq('year', year)).first();
  Export.image.toDrive({
    image: image,
    description: year + '_ET',
    fileNamePrefix: year + '_ET',
    scale: 27830,
    region: geometry,
    maxPixels: 1e13,
    crs: "EPSG:4326",
    folder: 'GLDAS_ET'
  });
});

这部分代码会把每年的蒸散量图像导出到 Google Drive 里,文件名包含年份信息,方便后续的分析和使用。

1.6 绘制年际变化图表

var chart = ui.Chart.image.series({
  imageCollection: annualImages,
  region: geometry,
  reducer: ee.Reducer.mean(),
  scale: 27830,
  xProperty: 'year'
}).setOptions({
  title: 'Interannual Variation of Evapotranspiration',
  hAxis: { title: 'Year', gridlines: { count: 10 } },
  vAxis: { title: 'Evapotranspiration (mm/year)' },
  lineWidth: 1,
  pointSize: 2,
  series: { 0: { color: 'black' } }
});

print(chart);

最后,我们利用 ui.Chart.image.series 函数绘制了蒸散量的年际变化图表,横坐标是年份,纵坐标是年蒸散量(单位:mm/year),这样可以直观地看到蒸散量随时间的变化趋势。

2 完整代码

var geometry = table; 
Map.centerObject(geometry, 6);

var dataset1 = ee.ImageCollection("NASA/GLDAS/V20/NOAH/G025/T3H");
var dataset2 = ee.ImageCollection("NASA/GLDAS/V021/NOAH/G025/T3H");

var getAnnualET = function(year, dataset) {
  var startDate = ee.Date.fromYMD(year, 1, 1);
  var endDate = ee.Date.fromYMD(year, 12, 31);
  
  return dataset.filterDate(startDate, endDate)
    .select('Evap_tavg')
    .sum()
    .multiply(10800)
    .clip(geometry)
    .set('year', year);
};

var years1 = ee.List.sequence(1948, 1999);
var years2 = ee.List.sequence(2000, 2024);

var annualImages = ee.ImageCollection.fromImages(
  years1.map(function(y) { return getAnnualET(y, dataset1); })
  .cat(years2.map(function(y) { return getAnnualET(y, dataset2); }))
);

years1.cat(years2).getInfo().forEach(function(year) {
  var image = annualImages.filter(ee.Filter.eq('year', year)).first();
  Export.image.toDrive({
    image: image,
    description: year + '_ET',
    fileNamePrefix: year + '_ET',
    scale: 27830,
    region: geometry,
    maxPixels: 1e13,
    crs: "EPSG:4326",
    folder: 'GLDAS_ET'
  });
});

var chart = ui.Chart.image.series({
  imageCollection: annualImages,
  region: geometry,
  reducer: ee.Reducer.mean(),
  scale: 27830,
  xProperty: 'year'
}).setOptions({
  title: 'Interannual Variation of Evapotranspiration',
  hAxis: { title: 'Year', gridlines: { count: 10 } },
  vAxis: { title: 'Evapotranspiration (mm/year)' },
  lineWidth: 1,
  pointSize: 2,
  series: { 0: { color: 'black' } }
});

print(chart);

3 运行结果

长时间序列的年度蒸散发ET数据折线图
点击RUN即可下载数据

通过上述代码,我们成功地利用 GEE 分析了指定区域蒸散量的年际变化。希望这篇推文能帮助你更好地掌握 GEE 的使用,让我们一起在地球科学的研究道路上不断探索!

内容概要:本文以电商仓储物流机器人为案例,深度解析机器人开发全流程,涵盖ROS系统搭建、SLAM建图、路径规划、机械臂控制、多机调度等核心技术。首先介绍了分层模块化架构和核心硬件选型,如主控制器、激光雷达、深度相机、驱动底盘和协作机械臂。接着详细讲述了ROS系统开发的核心实战,包括环境感知与SLAM建图、自主导航与动态避障等技术,提供了代码示例和技术关键点。然后探讨了机械臂抓取任务开发,涉及视觉定位系统、运动规划与力控制。随后介绍了多机器人集群调度系统的任务分配模型和通信架构设计。还讨论了安全与可靠性保障措施,包括硬件级安全设计和软件容错机制。最后总结了实战问题与解决方案,以及性能优化成果,并推荐了四大核心代码库和仿真训练平台。 适合人群:对机器人开发感兴趣的研发人员,尤其是有一定编程基础并希望深入了解仓储机器人开发的技术人员。 使用场景及目标:①学习仓储机器人从系统集成到底层硬件部署的全流程;②掌握ROS系统开发的核心技术,如SLAM建图、路径规划、机械臂控制等;③理解多机器人集群调度和安全可靠性设计;④解决实开发中的常见问题并优化系统性能。 阅读建议:本文内容详实,涵盖了从硬件选型到软件开发的各个方面,建议读者结合实项目需求,逐步深入学习,并通过实践操作加深理解。同时,利用提供的开源项目和仿真训练平台进行实验和验证。
资源下载链接为: https://pan.quark.cn/s/b7174785e9d3 在西安交通大学的模拟电子技术课程中,Tina 仿真软件得到了广泛应用。Tina 软件由欧洲 DesignSoft Kft. 公司研发,是一款重要的现代化 EDA 软件,可用于模拟及数字电路的仿真分析,在全球四十多个国家流行,拥有二十余种语言版本,包括中文版,内置约两万多个分立或集成电路元器件。 在模拟电路分析方面,Tina 功能强大,具备直流分析、瞬态分析、正弦稳态分析、傅立叶分析、温度扫描、参数扫描、最坏情况及蒙特卡罗统计等常规仿真功能。它还能依据输出电量指标对电路元件参数进行优化计算,具有符号分析功能,可给出时域过渡过程表达式或频域传递函数表达式,并且支持 RF 仿真分析,能绘制零、极点图、相量图、Nyquist 图等。 在数字电路分析方面,Tina 支持 VHDL 语言,拥有 BUS 总线及虚拟连线功能,使电路绘图界面更清晰简洁。该软件可执行电路的 DC、AC、瞬态、傅立叶、噪声等分析,并提供函数发生器、万用表、示波器、XY 记录仪和信号分析仪等虚拟仪器,方便学生进行电路测试与测量。 在西安交通大学,杨建国老师在模拟电子技术领域有着深厚造诣。他是博士生导师,研究方向主要为电子技术及其应用,在模拟电路和单片机应用方面教学经验丰富。杨建国老师著有 6 本相关著作,如《你好,放大器》《新概念模拟电路》等,这些著作受到了广大师生的欢迎,对模拟电子技术知识的传播和教学起到了积极的推动作用 ,为学生深入学习模拟电子技术提供了丰富的知识源泉,结合 Tina 仿真软件,能助力学生更好地理解和掌握模拟电子技术的相关知识与实践技能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值