基于 GEE 的归一化植被指数 NDVI 时间序列分析:Sen 斜率和 Mann-Kendall (MK) 检验

目录

1 代码解析

1.1 数据准备与NDVI集合构建

1.2 计算Sen斜率

1.3 Mann-Kendall(MK)检验

1.3.1 计算趋势期望均值(S统计量)

1.3.2 计算方差和Z统计量

1.3.3 显著性检验

2 完整代码

3 运行结果


大家好!今天我们来聊聊如何利用Google Earth Engine(GEE)分析长时间序列的NDVI数据,结合Sen斜率和Mann-Kendall(MK)检验来研究植被变化趋势。

1 代码解析

1.1 数据准备与NDVI集合构建

首先,代码通过Map.centerObject(table)将地图中心定位到一个特定的几何区域(table通常是一个矢量数据集,如研究区域的边界)。

接着,定义时间范围为2001年至2023年,并基于MODIS的MOD13A1数据集构建NDVI图像集合:

var stary = 2001, endy = 2023;
var NDVICL = ee.ImageCollection(ee.List.sequence(stary, endy).map(function(year) {
  var startd = ee.Date.fromYMD(year, 1, 1);
  var endd = ee.Date.fromYMD(year, 12, 31);
  return ee.ImageCollection('MODIS/006/MOD13A1')
    .filterDate(startd, endd)
    .select('NDVI')
    .max()
    .addBands(ee.Image.constant(year).toFloat().rename('year'));
}));
  • 逻辑:使用ee.List.sequence生成2001-2023的年份列表,通过map函数为每一年加载MODIS NDVI数据。
  • 细节:filterDate按年份过滤数据,select('NDVI')提取NDVI波段,max()计算每年最大值以减少云影响,最后添加一个常量波段year记录年份。
  • 输出:NDVICL是一个包含23个图像的集合,每个图像有NDVI和year两个波段。

1.2 计算Sen斜率

Sen斜率是一种非参数方法,用于估计时间序列的趋势斜率。代码如下:

var senSlope = NDVICL.select(['NDVI', 'year'])
    .reduce(ee.Reducer.sensSlope())
    .clip(table);
  • 逻辑:sensSlope()计算NDVI随年份变化的斜率,结果是一个包含slope和offset波段的图像。clip(table)将结果裁剪到研究区域。
  • 意义:正斜率表示NDVI随时间增加(植被变好),负斜率表示减少(植被退化)。
  • 可视化
var 
CSDN作为中国最大的IT技术社区,多年来一直收集整理了大量的NDVI归一化差异植被指数)数据。NDVI数据是遥感技术中一种反映植被覆盖状况的指标,通常用来研究植被生长植被变化。 通过对CSDN多年的NDVI数据进行SEN(Seasonal Trend)趋势分析,我们可以探究NDVI随季节的变化趋势,并从中得出一些有意义的结论。首先,SEN趋势分析可以帮助我们了解NDVI在不同季节间的波动情况以及整体的趋势。通过观察对比不同年份的数据,我们可以发现NDVI在春、夏、秋、冬四个季节内的变化规律。 其次,SEN趋势分析还可以帮助我们研究植被生长的季节性差异。在不同地区不同年份内,植被生长的时间强度可能存在差异。通过对CSDN多年NDVI数据中的SEN趋势进行分析,我们可以发现不同季节内的植被生长情况以及生长强度的变化。 最后,通过对CSDN多年NDVI数据的SEN趋势分析,我们还可以推测植被变化对气候变化的响应。植被的变化通常与温度、降水其他环境因素密切相关。通过分析NDVI数据的趋势,我们可以发现植被对气候变化的敏感性以及可能存在的变化模式。 总而言之,通过对CSDN多年NDVI数据的SEN趋势分析,我们可以深入了解植被在不同季节间的变化规律、植被生长的季节性差异以及植被对气候变化的响应。这些分析结果具有重要的科学研究实际应用价值,可以为农业生产、气候变化研究等领域提供有益的参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值