mobike算法挑战赛

本文记录了作者参加Mobike算法大赛的经历,挑战了不同于以往的时间序列预测,而是涉及推荐系统和二分类问题。通过负样本构造、特征提取和模型调参等步骤,目前排名40,分享了学习与实践的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

抱着学习的心态参加了一个不错的比赛mobike算法大赛,之前的好几次比赛都是时间序列预测 + 回归。这次的不一样,主要是推荐 + 二分类,从来没接触过这样的类型,很有意思。赛题的解决思路主要是:负样本构造,特征提取,模型调参。目前一个人搞了一周多,排名40,不论如何坚持到最后。


1. 赛题解析


2. 负样本构造


3. 特征提取


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值