本研究提出了一种基于YOLOv8深度学习的智慧医疗疟疾检测和诊断系统,旨在显著提升疟疾感染的自动化识别精度,为医疗机构和卫生专业人员提供一种快速且准确的筛查工具。该系统集成了先进的YOLOv8深度学习模型,通过PyQt5构建的用户友好界面实现流畅的操作流程,极大地方便了用户对系统的使用。系统以显微图像为输入,通过分析其中的细微特征对疟疾感染状态进行分类,分类结果涵盖“感染不明显”、“感染疟疾”和“未感染疟疾”三种状态。
在数据准备阶段,本研究采用了包含多种感染状态的庞大标注数据集,并针对显微图像的特性进行优化处理,从而提升模型的学习效果和实际应用中的适用性。通过对该数据集的深入训练和优化,系统具备了高效识别疟疾感染状态的能力,能够帮助医生快速判断患者的健康状况,为临床诊断提供具有参考价值的辅助信息。此外,该系统通过对显微图像中不同感染程度的疟原虫特征进行有效提取和分类,展示了在感染状态识别方面的高准确性和稳定性。
实验结果表明,该系统在不同感染阶段的分类性能表现优异,能够在各种感染环境下保持较高的识别准确率和鲁棒性。因此,该智慧医疗疟疾检测和诊断系统为快速筛查和精确诊断提供了一种智能化解决方案,具有广泛的临床应用潜力。随着该系统的推广应用,有望在疟疾的早期检测和防控方面发挥重要作用,为公共卫生事业做出积极贡献。
算法流程
项目数据
通过搜集关于数据集为各种各样的疟疾检测相关图像,并使用Labelimg标注工具对每张图片进行标注,分3检测类别,分别是’感染不明显’,’感染疟疾’,’未感染疟疾’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!
存放标签类别的文件的文件名为clas