基于YOLOv8深度学习的智慧农业牛的行为检测系统(PyQt5界面+数据集+训练代码)

本研究提出了一种基于YOLOv8深度学习算法的牛行为检测系统,旨在智慧农业领域实现牛的行为识别。随着智能农业的发展,自动化的牛行为监测系统逐渐成为提高养殖效率和健康管理的重要工具。本系统结合了PyQt5界面、专用数据集和优化后的训练代码,能够实时监测牛群的活动状态,并精准识别牛的三种主要行为:躺卧、站立和行走。系统将深度学习技术与直观的用户界面相结合,使得牧场管理者能够实时获取牛群的健康状态和活动信息。这些数据有助于牧场在早期识别出潜在的健康问题或行为异常,从而迅速做出反应,保障牛群健康,并减少人为监控的成本。

通过行为分类的高精度识别,系统不仅可以帮助管理者了解牛的日常活动规律,还可以支持更科学的牧场管理策略,例如调整饲料投放时间、优化放牧区域等,从而进一步提升生产效率。此外,该系统在训练过程中利用了丰富的农业数据集,在复杂的实际环境下表现出良好的鲁棒性和检测精度。实验结果表明,即使在光照不均或牛群密集的环境下,系统依旧能够准确识别牛的行为模式,具有很强的适应性和扩展性。

整体而言,该系统在智慧农业的背景下具有广泛的应用前景,不仅能够大幅提升牧场的管理效率,还为智慧畜牧业的深入研究提供了坚实的技术支撑。

算法流程

项目数据

通过搜集关于数据集为各种各样的牛行为检测相关图像,并使用Labelimg标注工具对每张图片进行标注,分3检测类别,分别是’牛躺卧’,’牛站立’,’牛行走’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值