随着智慧基础设施的不断发展,桥梁的安全性与可靠性已成为维护现代交通系统的关键因素。桥梁钢缆的损坏可能对整体结构安全造成严重影响,因此,对钢缆进行有效的检测和维护至关重要。本文提出了一种基于YOLOv8深度学习的桥梁钢缆缺陷检测系统,集成了PyQt5界面、数据集和训练代码,旨在实现对桥梁钢缆缺陷的智能化识别与监测。该系统能够检测钢缆滑动、腐蚀及裂纹等多种缺陷,利用YOLOv8的强大特征提取和目标检测能力,能够实现实时、高精度的钢缆缺陷识别,有助于提高桥梁安全管理水平,减少人工巡检的负担。
通过引入深度学习技术,该系统可自动识别不同类型的钢缆缺陷,显著降低了对人工检测的依赖。集成的PyQt5界面使用户能够便捷地操作系统,实现数据输入、模型训练及结果可视化,大幅提升了检测工作的效率。系统的训练和测试均基于实际的桥梁钢缆缺陷数据集,确保了模型在实际应用中的有效性和鲁棒性。实验结果表明,该系统在桥梁钢缆缺陷检测中表现优异,尤其在高精度和实时性方面具有显著优势。
此外,本文还探讨了系统在不同环境下的适应性,包括不同气候条件和光照变化对检测精度的影响。结果显示,该系统具备较强的环境适应能力,能够在多种复杂环境中保持稳定的检测效果。这表明本系统在桥梁维护和安全管理方面具有广泛的应用前景,能够为桥梁管理部门提供科学的决策依据,进一步提升公共基础设施的安全性与可靠性。
算法流程
项目数据
通过搜集关于数据集为各种各样的桥梁钢缆缺陷检测相关图像,并使用Labelimg标注工具对每张图片进行标注,分3检测类别,分别是’桥梁钢缆滑动’, ‘桥梁钢缆腐蚀’, ‘桥梁钢缆裂纹’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!