随着生活方式的改变和医疗技术的进步,甲状腺结节的发病率在全球范围内逐年上升,成为一种常见的内分泌系统疾病。尽管大多数甲状腺结节为良性,但其中部分结节可能发展为恶性,进而演变为甲状腺癌。因此,如何在早期对甲状腺结节进行准确的检测与分类,成为临床诊断中的一项关键任务。传统的甲状腺结节诊断依赖于超声成像和病理活检,但这种方法不仅依赖医生的经验,还可能导致误诊或漏诊,给病人带来不必要的心理压力和身体负担。
本文提出了一种基于YOLOv8深度学习算法的医学影像甲状腺结节检测与诊断系统,旨在解决传统方法的局限性。YOLOv8模型以其优异的实时目标检测性能和高精度著称,能够快速处理大规模医学影像数据,自动识别并分类甲状腺影像中的结节。我们构建的系统能够将甲状腺结节分为恶性和良性两类,极大地提升了诊断效率。为增强用户体验,系统采用PyQt5框架设计了可视化用户界面,医生可以通过该界面直观查看检测结果,并与系统进行交互,例如调整参数、保存数据或导出报告。
系统所使用的数据集涵盖了不同类型和形态的甲状腺结节影像,确保了模型的广泛适应性和泛化能力。在模型训练过程中,我们通过数据增强、迁移学习等技术,进一步提高了模型在复杂病例中的表现。实验结果表明,该系统不仅在恶性和良性结节的分类上达到了较高的准确率,还在处理速度和鲁棒性方面表现出色。与传统诊断方法相比,基于YOLOv8的甲状腺结节检测系统为临床提供了有效的辅助诊断工具,具有广泛的应用前景,尤其是在大规模筛查和远程医疗等场景中。
本研究为甲状腺结节的早期筛查和临床诊断提供了一种高效、可靠的解决方案,有望减少患者的心理负担,并为医生提供更有力的决策支持,从而提高整体诊疗质量。
算法流程
项目数据
通过搜集关于数据集为各种各样的阿尔兹海默症相关图像,并使用Labelimg标注工具对每张图片进行标注,分2个检测类别,分别是’良性结节’,’恶性结节’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中: