基于YOLOv8深度学习的婴儿情绪状态检测系统(PyQt5界面+数据集+训练代码)

婴儿的情绪状态是其表达健康状况、情感需求以及与外界互动的重要方式,准确识别婴儿的情绪对父母和看护者理解其需求具有关键意义。然而,由于婴儿语言能力的缺乏,他们通常通过面部表情、动作和哭声等非语言行为来表达情绪,因此需要一种高效、精准的技术手段来进行自动化识别。为解决这一问题,本研究提出了一种基于YOLOV8深度学习模型的婴儿情绪状态检测系统,专注于自动识别婴儿的四种主要情绪状态:哭泣、抗拒、平静和开心。这些情绪涵盖了婴儿在日常生活中的主要情感表现,能够帮助看护者更好地理解婴儿的需求和情绪变化。

该系统通过使用标注良好的婴儿情绪数据集进行训练,结合先进的卷积神经网络(CNN)模型实现情绪状态的高精度识别。YOLOV8模型作为该系统的核心,具有快速准确的目标检测和分类能力,能够有效区分婴儿的不同情绪状态。通过大规模的情绪图像数据训练,模型能够学习婴儿面部特征和身体动作的微小差异,进而精确判断婴儿的情绪状态。

系统界面基于PyQt5框架开发,提供了简洁直观的用户操作界面,用户可以方便地加载数据集、进行模型训练以及执行实时情绪检测。界面设计充分考虑了用户体验,集成了多个模块,包括数据预处理、模型参数调整、训练过程可视化以及检测结果的实时展示,便于用户根据具体需求进行操作。此外,该系统还具备一定的扩展性,可根据不同场景需求进一步优化和定制,以实现更复杂的情绪检测任务。

实验结果显示,该婴儿情绪状态检测系统在实际应用中表现出较高的准确性和实时性,能够快速响应并准确识别婴儿的情绪变化。该系统不仅在情绪识别的准确性上具有优势,还能够在保证实时检测的前提下提供稳定的性能。未来,随着数据集的进一步扩充和模型的优化,该系统有望在家庭护理、智能监控设备和早教领域得到广泛应用,成为婴儿情绪识别领域的一项重要技术创新。

本研究通过结合先进的深度学习模型与友好的界面设计,成功开发了一种高效的婴儿情绪状态检测系统。该系统为婴儿情绪状态的自动化检测提供了新的解决方案,具有广泛的应用前景和发展潜力。

算法流程

项目数据

通过搜集关于数据集为各种各样的婴儿情绪状态相关图像,并使用Labelimg标注工具对每张图片进行标注,分4个检测类别,分别是’婴儿哭闹’,’婴儿抗拒’,’婴儿平静’,’婴儿开心’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwi

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值