本文提出了一种基于YOLOv8深度学习模型的智慧农业橙子品质检测分级与语音提醒系统,旨在实现对橙子质量的智能化监测与分类,为现代农业提供技术支持。系统通过结合先进的深度学习技术与PyQt5设计的用户界面,具备实时检测、精准分级和语音提醒的多功能特点,提升了用户体验和操作便利性。为实现高效的分类性能,系统选用了YOLOv8模型,利用其在目标检测领域的最新进展,结合精心标注的橙子数据集进行模型训练,使其能够精确地识别橙子的成熟状态。
该系统将橙子划分为“一级果 橙子已成熟”和“二级果 橙子未成熟”两类,不仅满足了橙子品质分级的实际需求,还为用户提供了多种输入模式,包括图片、视频和实时摄像头的检测方式,以适应多样化的应用场景。用户只需加载对应的输入源,系统即可在毫秒级内完成检测,自动输出橙子分类结果、置信度、目标位置信息,并通过语音提醒功能实时播报分级结果,进一步提高了操作效率和实用性。
实验结果表明,该系统在复杂背景、不同光照条件及多目标场景下均表现出卓越的检测精度和实时性,充分展示了其鲁棒性与可靠性。具体而言,系统在测试数据集上的平均精度(mAP)达到较高水平,并能有效处理目标遮挡和不同角度下的检测任务。这表明该系统在智慧农业中的应用潜力巨大,可有效提升橙子质量管理的自动化和科学化水平。
总之,该系统为智慧农业领域提供了一种创新的解决方案,通过智能化的检测与分级流程,大幅减少人工操作的成本与误差,同时为农户提供了橙子质量分级的科学依据。未来,系统可进一步扩展应用到其他水果的品质检测与分级领域,推动智慧农业技术的广泛应用和发展。
算法流程
项目数据
通过搜集关于数据集为各种各样的橙子品质相关图像,并使用Labelimg标注工具对每张图片进行标注,分2检测类别,分别是’一级果 橙子已成熟’, ‘二级果 橙子未成熟’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对