【tricks篇】学习率调整策略lr_scheduler

知乎对应:【tricks】学习率调整策略lr_scheduler
后期主要针对知乎进行更新~~~请移步知乎哦

学习率是深度学习训练中至关重要的参数,很多时候一个合适的学习率才能发挥出模型的较大潜力。
Pytorch中常见的学习率调整方法。


一、整体代码框架

Pytorch 实现的绘制学习率轮次变化图

import torch
import matplotlib.pyplot as plt
import torchvision.models as models
import torch.optim.lr_scheduler as lr_scheduler

# 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用来正常显示负号
plt.rcParams['axes.unicode_minus'] = False

def get_lr(optimizer):  # 从优化器中读取学习率
    for param_group in optimizer.param_groups:
        return param_group['lr']
 
if __name__ == "__main__":
    # ------------------------------------#
    #   神经网络模型
    # ------------------------------------#
    model = models.resnet18(pretrained=False)

    # ------------------------------------#
    #   训练设置
    # ------------------------------------#
    number_epoches = 500
    # 学习率和优化策略
    learning_rate = 1e-1
    optimizer = torch.optim.Adam(model.parameters(), learning_rate, weight_decay=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值