基于Timescale Vector的RAG对话检索应用开发

在这篇文章中,我们将深入探讨如何使用Timescale Vector创建一个以对话为基础的检索生成(RAG)应用。RAG是一种结合了大语言模型(LLM)和检索技术的强大工具,适用于需要结合上下文信息进行对话生成的任务。

技术背景介绍

RAG结合了检索与生成技术,允许从文档中检索相关信息并通过LLM进行合成,适用于聊天机器人、客服系统等应用。Timescale Vector作为一个高性能的向量存储解决方案,提供了存储和快速检索大量文档的能力。

核心原理解析

该应用的核心在于将对话历史和检索到的文档一起传递给LLM,以生成更准确和上下文相关的响应。通过Timescale Vector,我们能够高效地进行文档的存储和检索。

代码实现演示

接下来,我们将展示如何配置和运行这个RAG对话应用。

首先,确保你已拥有Timescale Vector的账号,并设置TIMESCALES_SERVICE_URL。另外,设置你的OpenAI API密钥以访问模型:

export TIMESCALES_SERVICE_URL='your-timescale-url'
export OPENAI_API_KEY='your-openai-api-key'

环境准备与项目初始化

我们需要首先安装LangChain CLI工具:

pip install -U "langchain-cli[serve]"

然后创建一个新的LangChain项目并添加rag-timescale-conversation包:

langchain app new my-app --package rag-timescale-conversation

或者添加到现有项目中:

langchain app add rag-timescale-conversation

在你的server.py文件中加入以下代码:

from rag_timescale_conversation import chain as rag_timescale_conversation_chain

add_routes(app, rag_timescale_conversation_chain, path="/rag-timescale_conversation")

启动应用

如果你已经在项目目录中,可以直接通过以下命令启动本地服务器:

langchain serve

服务器将运行在 http://localhost:8000,你可以通过 http://127.0.0.1:8000/docs 查看所有模板,或通过 http://127.0.0.1:8000/rag-timescale-conversation/playground 访问操作界面。

加载自定义数据集

为了加载自定义的数据集,需要实现一个load_dataset函数。可参考load_sample_dataset.py中的load_ts_git_dataset函数。你可以在单独的Bash脚本中运行或在chain.py中调用。

应用场景分析

这种结合检索与生成的对话系统特别适用于需要对上下文进行深刻理解和动态信息获取的场景,例如智能客服系统、调研问卷自动回答等。

实践建议

  1. 性能优化:使用Timescale Vector存储和检索大量文档,确保响应时间足够快。
  2. 数据更新:定期更新向量数据库以保持信息的时效性。
  3. 调试与监控:结合LangSmith工具进行应用的监控和调试,提升系统的稳定性。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值