使用Doctran进行文档问答转换以优化向量检索

在越来越多的信息管理中,文档通常以叙述或对话形式存储在向量知识库中。然而,用户查询则通常以问答形式进行。为了提高检索相关文档的可能性并减少检索到不相关文档的风险,我们可以在向量化之前将文档转换为问答格式。这可以通过使用Doctran库实现,该库利用OpenAI的功能调用特性来"询问"文档。本篇将深入探讨如何使用Doctran优化向量检索。

技术背景介绍

在向量知识库中存储文档是组织和检索信息的有效方法。然而,由于用户查询通常以问答格式呈现,直接检索文档可能会导致上下文不匹配的问题。Doctran通过将文档转化为问答格式,提高文档与用户查询的相似度,从而更精准地获取相关信息。

核心原理解析

Doctran使用问答转换器来处理文档,将文档的内容解析为一系列问答对。通过这种转换,向量化后的文档能够更好地匹配用户的查询,提高检索效率。核心在于利用OpenAI的功能调用特性,实现自动问答生成。

代码实现演示

下面是一个使用Doctran库进行文档问答转换的示例代码。在本示例中,我们将展示如何处理一个安全私密的公司内邮件,并将其转换为问答格式以进行向量存储。

# 安装Doctran库以便使用
%pip install --upgrade --quiet doctran

import json
from langchain_community.document_transformers import DoctranQATransformer
from langchain_core.documents import Document
from dotenv import load_dotenv

load_dotenv()

# 输入文档内容
sample_text = """[Generated with ChatGPT]

Confidential Document - For Internal Use Only

Date: July 1, 2023

Subject: Updates and Discussions on Various Topics

Dear Team,

I hope this email finds you well. In this document, I would like to provide you with some important updates and discuss various topics that require our attention. Please treat the information contained herein as highly confidential.

Security and Privacy Measures
As part of our ongoing commitment to ensure the security and privacy of our customers' data, we have implemented robust measures across all our systems. We would like to commend John Doe (email: john.doe@example.com) from the IT department for his diligent work in enhancing our network security. Moving forward, we kindly remind everyone to strictly adhere to our data protection policies and guidelines. Additionally, if you come across any potential security risks or incidents, please report them immediately to our dedicated team at security@example.com.

HR Updates and Employee Benefits
Recently, we welcomed several new team members who have made significant contributions to their respective departments. I would like to recognize Jane Smith (SSN: 049-45-5928) for her outstanding performance in customer service. Jane has consistently received positive feedback from our clients. Furthermore, please remember that the open enrollment period for our employee benefits program is fast approaching. Should you have any questions or require assistance, please contact our HR representative, Michael Johnson (phone: 418-492-3850, email: michael.johnson@example.com).

Marketing Initiatives and Campaigns
Our marketing team has been actively working on developing new strategies to increase brand awareness and drive customer engagement. We would like to thank Sarah Thompson (phone: 415-555-1234) for her exceptional efforts in managing our social media platforms. Sarah has successfully increased our follower base by 20% in the past month alone. Moreover, please mark your calendars for the upcoming product launch event on July 15th. We encourage all team members to attend and support this exciting milestone for our company.

Research and Development Projects
In our pursuit of innovation, our research and development department has been working tirelessly on various projects. I would like to acknowledge the exceptional work of David Rodriguez (email: david.rodriguez@example.com) in his role as project lead. David's contributions to the development of our cutting-edge technology have been instrumental. Furthermore, we would like to remind everyone to share their ideas and suggestions for potential new projects during our monthly R&D brainstorming session, scheduled for July 10th.

Please treat the information in this document with utmost confidentiality and ensure that it is not shared with unauthorized individuals. If you have any questions or concerns regarding the topics discussed, please do not hesitate to reach out to me directly.

Thank you for your attention, and let's continue to work together to achieve our goals.

Best regards,

Jason Fan
Cofounder & CEO
Psychic
jason@psychic.dev
"""

# 创建文档对象
documents = [Document(page_content=sample_text)]
# 初始化问答转换器
qa_transformer = DoctranQATransformer()
# 转换文档为问答格式
transformed_document = qa_transformer.transform_documents(documents)

# 打印转换后的问答元数据
print(json.dumps(transformed_document[0].metadata, indent=2))

应用场景分析

此方法适用于各种场景,例如企业内部文件管理、法律文档处理以及客户服务记录等。通过问答格式化,可以更高效地回答用户问题,以及在大规模文档库中快速定位关键信息。

实践建议

  1. API密钥安全性:确保API密钥在环境变量中安全存储,从而避免泄露。
  2. 数据隐私保护:处理涉及敏感数据的文档时,请遵循相关的数据保护协议。
  3. 定期更新文档库:随着时间推移,及时更新文档库,以确保检索的相关性和准确性。

如果遇到问题欢迎在评论区交流。
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值