VikingDB是一个专用于存储、索引和管理由深度神经网络及其他机器学习模型生成的海量嵌入向量的数据库。在这里,我们将展示如何利用VikingDB的功能进行数据存储和检索。
技术背景介绍
随着深度学习技术的普及,处理庞大的向量数据变得尤为重要。VikingDB提供一种高效的方式来存储和检索这些嵌入向量,支持快速的相似度搜索,并可根据需要进行数据的划分与管理。
核心原理解析
VikingDB通过向量化的数据库模式,使存储和检索大规模向量数据变得高效。其实现依赖于将文档内容转化为嵌入向量,并利用这些向量进行高效的相似度计算。
代码实现演示
下面的示例代码展示了如何使用VikingDB来存储和检索文档嵌入向量:
import getpass
import os
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.vikingdb import VikingDB, VikingDBConfig
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
# 设置OpenAI API密钥
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
# 加载文本并分割为小块
loader = TextLoader("./test.txt") # 载入文本文件
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# 创建嵌入向量
embeddings = OpenAIEmbeddings()
# 创建VikingDB实例并存储文档向量
db = VikingDB.from_documents(
docs,
embeddings,
connection_args=VikingDBConfig(
host="host", region="region", ak="ak", sk="sk", scheme="http"
),
drop_old=True,
)
# 执行相似度搜索
query = "What did the president say about Ketanji Brown Jackson"
results = db.similarity_search(query)
# 输出第一个结果的内容
print(results[0].page_content)
应用场景分析
VikingDB非常适合以下场景:
- 大规模文档的相似度搜索
- 多种独立数据集合的管理
- 需要快速检索的嵌入向量数据场景
实践建议
- 合理选择分块大小:根据文档内容及查询需求,优化文档分块大小以提升检索效率。
- 数据集合管理:使用VikingDB的集合功能,将不同类型的数据分开存储,以保持上下文的独立性。
- 定期更新嵌入向量:随着模型的更新,重新生成嵌入向量以提升搜索准确性。
结束语:如果遇到问题欢迎在评论区交流。
—END—