机器学习(一)数据集的组成

本文探讨了机器学习中数据的存储方式,强调文件而非数据库的重要性,并介绍了数据管理工具如pandas和numpy的作用。同时,文章概述了数据集的常见来源如scikit-learn、uci和Kaggle,以及数据集的组成结构,包括特征值和目标值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习的数据存储方式

机器学习的数据一般主要用文件来存储,而不是用数据库来存储数据,主要有以下几点:
 1,数据库性能瓶颈,读取速度
 2,格式不太符合机器学习要求数据的格式

数据管理工具

数据存储用pandas作为数据读取工具,numpy释放了GIL,实现真正的多线程,速度快

数据集的分类

 1,scikit-learn
 2,uci
 3,Kaggle

数据集的组成

特征值+目标值
行列分别对应特征值和目标值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值