【算法】链表

文章介绍了几种常见的链表操作,包括链表的倒序输出、两种方法实现有序链表的合并、链表的反转以及如何删除链表的中间节点。通过递归和迭代展示了这些操作的实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链表倒序输出

这个比较简单,不加赘述,直接用递归就好,当然,你也可以用栈

 public static void  inorderTraverseList(ListNode head){
        if (head==null){
            return ;
        }
        inorderTraverseList(head.next);
        System.out.println(head.val);
    }
    public static void main(String[] args) {
        ListNode head = new ListNode(1, new ListNode(2, new ListNode(5, null)));
        inorderTraverseList(head);
    }

有序链表合并

合并两个有序链表有两种方式,一种方式是直接遍历两个链表,然后每次都把较小的那个值插入到链表中,不断迭代判断,直到某一条或者两条链表都为空,那么此时,数据已经有序,如果说两条链表长度不同,那么还没有遍历到链表尾的那一条链表的元素肯定比当前新链表的最大的节点还大,所以直接拼接到新链表的尾巴即可。

public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        ListNode dummyNode = new ListNode(-1);
        ListNode pre = dummyNode;
        while (l1 != null && l2 != null) {
            if (l1.val <= l2.val) {
                pre.next = l1;
                pre = pre.next;
                l1 = l1.next;
            } else {
                pre.next = l2;
                pre = pre.next;
                l2 = l2.next;
            }
        }
        pre.next = l1 == null ? l2 : l1;
        return dummyNode.next;
    }

还有一种就是递归了,我们直到递归操作可以不断的遍历链表,遍历到链表最后的节点之后,在回退,因此,如果我们可以遍历到最大值,然后携带着每次的最大值再进行回退,是不是就可以做到每次拼接的下一个节点都是更大的值呢?
我们先简单的来一段链表递归倒叙遍历的代码

 public static void  inorderTraverseList(ListNode head){
        if (head==null){
            return ;
        }
        inorderTraverseList(head.next);
        System.out.println(head.val);
    }
    public static void main(String[] args) {
        ListNode head = new ListNode(1, new ListNode(2, new ListNode(5, null)));
        inorderTraverseList(head);
    }

因此,我们的终结条件其实就是,节点为空,那么直接代表着这个节点没有值了,但是另一个节点不一定,我们可以返回另一个节点。
同时我们不断比较大小的方式来判断当前节点的后面一个节点应该连接的是谁。
如果l1小,那么我们就让l1后移,而如果l2小,则l2后移。

    public static ListNode mergeTwoLists2(ListNode l1, ListNode l2) {
        if (l1 == null) {
            return l2;
        } else if (l2 == null) {
            return l1;
        } else if (l1.val < l2.val) {
            l1.next = mergeTwoLists2(l1.next, l2);
            return l1;
        } else {
            l2.next = mergeTwoLists2(l1, l2.next);
            return l2;
        }
    }

    public static void main(String[] args) {
        mergeTwoLists2(new ListNode(1,new ListNode(2,new ListNode(5,null))),
                new ListNode(2,new ListNode(4,new ListNode(5,null))) );
    }

链表反转

一个链表想要进行反转,那么就意味着, 原本的前驱节点,现在需要变为后继节点。
那么明显的,我们就需要保存一个pre作为原前驱节点,cur表示当前需要交换的节点。

  public static ListNode reverseList(ListNode head) {
  //开始时没有前驱节点
        ListNode prev = null;
 //头节点就是第一个要交换的节点
 //因为我们直到如果反转,那么头节点最后指向的是空
        ListNode curr = head;
        while (curr != null) {
            ListNode next = curr.next;
            curr.next = prev;
            prev = curr;
            curr = next;
        }
        return prev;
    }

部分链表反转

同样的,如果我们已经得到了反转全部链表的代码,我们想要反转部分的链表内容,我们只需要截断完整链表,然后对这部分内容进行反转,在进行拼接即可。

  public ListNode reverseBetween(ListNode head, int left, int right) {
        // 因为头节点有可能发生变化,使用虚拟头节点可以避免复杂的分类讨论
        ListNode dummyNode = new ListNode(-1);
        dummyNode.next = head;

        ListNode pre = dummyNode;
        // 第 1 步:从虚拟头节点走 left - 1 步,来到 left 节点的前一个节点
        // 建议写在 for 循环里,语义清晰
        for (int i = 0; i < left - 1; i++) {
            pre = pre.next;
        }

        // 第 2 步:从 pre 再走 right - left + 1 步,来到 right 节点
        ListNode rightNode = pre;
        for (int i = 0; i < right - left + 1; i++) {
            rightNode = rightNode.next;
        }

        // 第 3 步:切断出一个子链表(截取链表)
        ListNode leftNode = pre.next;
        ListNode curr = rightNode.next;

        // 注意:切断链接
        pre.next = null;
        rightNode.next = null;

        // 第 4 步:同第 206 题,反转链表的子区间
        reverseLinkedList(leftNode);

        // 第 5 步:接回到原来的链表中
        pre.next = rightNode;
        leftNode.next = curr;
        return dummyNode.next;
    }

    private void reverseLinkedList(ListNode head) {
        // 也可以使用递归反转一个链表
        ListNode pre = null;
        ListNode cur = head;

        while (cur != null) {
            ListNode next = cur.next;
            cur.next = pre;
            pre = cur;
            cur = next;
        }
    }

删除链表中间节点

给你一个链表,要求删除链表正中间的节点,比如链表为1,2,3,4,5,那么你需要删除3这个节点,如果链表为1,2,3,4,那么你需要删除3这个节点,也就是每次删除的节点的索引(从0开始)为list.length/2,向下取整。
对于这种刚刚好删除中间节点的方法,我们有两种解决思路,一种是暴力求链表长度,然后删除中间节点,另一种是使用快慢指针,快指针一次跳两个位置,慢指针一次跳一个位置,当快指针到链表尾后,慢指针刚刚好在链表中间。
代码如下:

package offer.list;

/**
 * @author: 张锦标
 * @date: 2023/7/3 9:55
 * DeleteMiddleNode类
 */
public class DeleteMiddleNode {
    //快慢指针删除中间节点
    //快指针一次性移动两个位置
    //慢指针一次一个位置
    public ListNode deleteMiddle1(ListNode head) {
        ListNode myHeader = new ListNode(0, head); // 哨兵
        ListNode p1 = myHeader;
        ListNode p2 = myHeader.next;
        while (p2 != null && p2.next != null) {
            p1 = p1.next;
            p2 = p2.next.next;
        }
        p1.next = p1.next.next;
        return myHeader.next;
    }
    //暴力
    public ListNode deleteMiddle(ListNode head) {
        if (head == null) {
            return null;
        }
        ListNode dummyNode = head;
        int length = getLength(dummyNode) / 2;
        if (length==0){
            return null;
        }
        while (--length > 0) { //1 2 3 4 5
            dummyNode = dummyNode.next;
        }
        if (dummyNode.next != null) {
            dummyNode.next = dummyNode.next.next;
        }
        return head;
    }

    public int getLength(ListNode head) {
        int count = 0;
        while (head != null) {
            count++;
            head = head.next;
        }
        return count;
    }
}

### 回答1: LRU (Least Recently Used) 算法是一种常用于缓存淘汰策略的算法,它的原理是根据数据的访问时间来进行淘汰,即最近最少使用的数据优先被淘汰。在实现 LRU 算法时,我们通常使用一个双向链表和一个哈希表来存储数据。 链表中的每个节点用来存储一个数据,节点包含三个属性:key,value 和 prev、next 指针,其中 key 和 value 分别表示数据的键和值,prev 和 next 指针用来指向前驱和后继节点。 哈希表用来存储每个数据在链表中的位置,键为数据的键,值为链表中对应节点的指针。这样,在对数据进行查找和删除时,我们只需要在哈希表中查找对应节点的指针,就可以快速地访问到链表中的数据。 每次访问数据时,我们需要将其移到链表的末尾,这样就可以保证链表的头部始终为最近最少使用的数据。当链表已满时,我们需要删除链表头部的数据,也就是最近最少使用的数据。 总的来说,实现 LRU 算法需要以下几个步骤: 1. 初始化一个双向链表和一个哈希表; 2. 每次访问数据时,将其移到链表的末尾; 3. 当链表已满时,删除链表头部的数据; 4. 在链表和哈希表中添加、删除或查找数据时,需要保证两者的一致性。 ### 回答2: Java LRU(最近最少使用)算法可以通过链表实现。 LRU算法是一种用于缓存淘汰的策略,它根据数据的使用情况来决定哪些数据将被保留在缓存中,哪些数据将被淘汰。在LRU算法中,最近最少使用的数据会被选择淘汰。 在Java中,我们可以使用链表来实现LRU算法链表的每个节点代表一个数据,节点的顺序表示数据的使用顺序,最近使用的数据位于链表的头部,最近最少使用的数据位于链表的尾部。 实现LRU算法链表需要支持两个操作:插入和删除。当有新的数据被访问时,我们首先在链表中查找该数据。如果数据已经存在于链表中,我们将其从原来的位置删除,并将其插入到链表的头部。如果数据不存在于链表中,我们将其插入到链表的头部。当链表的大小达到缓存的容量上限时,我们需要删除链表尾部的节点。 通过链表实现LRU算法有一定的优势。插入和删除操作的时间复杂度为O(1),即常数时间。同时,由于链表的特性,我们可以轻松地调整节点的顺序,以实现LRU算法的功能。 总之,通过链表实现Java LRU算法是一种简单有效的方法。它通过维护一个有序的链表结构来实现数据的使用顺序,并且支持快速的插入和删除操作。这种实现方式可以用于缓存等需要快速访问和淘汰数据的场景,提高系统性能和效率。 ### 回答3: LRU(Least Recently Used,最近最少使用)算法是一种常用的缓存替换算法,用于解决缓存空间有限的情况下,有效地管理缓存中的数据。 在实现LRU算法时,通常使用双向链表和HashMap结合的方式。 双向链表是用于记录数据的访问顺序,最近访问的数据位于链表头部,而最久未访问的数据位于链表尾部。每当有数据被访问时,如果该数据在链表中已存在,则将该数据移到链表头部;如果数据不存在,则将该数据添加到链表头部。当缓存满时,需要替换最久未访问的数据,即链表尾部的数据。 HashMap用于快速定位某个数据是否在缓存中,并记录该数据在双向链表中的位置。当需要访问数据时,首先在HashMap中查找是否存在该数据,若存在,则将该数据移到链表头部,同时更新HashMap中该数据对应的位置;若不存在,则将该数据添加到链表头部,并在HashMap中添加该数据的映射。 通过以上的链表和HashMap的结合,可以实现LRU算法。当数据被访问时,可以在O(1)的时间复杂度内完成查找和移动操作,从而提高算法的效率。 总结起来,LRU算法通过双向链表和HashMap的结合,实现了对缓存中数据的高效管理,提高了数据访问效率。这种算法在很多场景下都有广泛的应用,比如操作系统的页面置换、数据库查询优化等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangBlossom

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值