Linux & Windows 的Tensorflow 配置: Nvidia 老显卡运算能力低于3.0

实测成功配置信息1:

Windows10,GT755m, Capability 3.0

  • Ana(Mini)conda管理,环境 Python 3.6(.13) 
  • Cuda=9.0 Cudnn=7.0 Tensorflow_gpu=1.10.0(1.11.0 就已经不行了)
  • matplotlib = 2.2.5, pandas = 1.0.0 (限制版本是因为不能破坏tensorflow对numpy依赖:<=1.14.5,更高的版本没有试)
  • jupyter = 1.0.0 (Miniconda 需要自装,高版本未测)

更新!

在 tf 训练时发现一条信息(不是错误,不理它也没关系):“Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA”

说明 pip 库的 tf-gpu 版本不支持 cpu 的 avx2,这是因为gpu版本下 cpu 的支持不是很重要,且不是所有 cpu 都支持avx2,官方库优先考虑了兼容性。但我们只有3.0算力的显卡,如果弹出了这条信息,那还是尽可能提升 cpu 的性能能力吧。

avx2 支持需要 tf 源码在编译时加入特定的编译选项,比较麻烦。好在 github 上有别人编译好的,直接下载并用 pip 本地安装。

解决方案:彻底解决“Your CPU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值