实测成功配置信息1:
Windows10,GT755m, Capability 3.0
- Ana(Mini)conda管理,环境 Python 3.6(.13)
- Cuda=9.0 Cudnn=7.0 Tensorflow_gpu=1.10.0(1.11.0 就已经不行了)
- matplotlib = 2.2.5, pandas = 1.0.0 (限制版本是因为不能破坏tensorflow对numpy依赖:<=1.14.5,更高的版本没有试)
- jupyter = 1.0.0 (Miniconda 需要自装,高版本未测)
更新!
在 tf 训练时发现一条信息(不是错误,不理它也没关系):“Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA”
说明 pip 库的 tf-gpu 版本不支持 cpu 的 avx2,这是因为gpu版本下 cpu 的支持不是很重要,且不是所有 cpu 都支持avx2,官方库优先考虑了兼容性。但我们只有3.0算力的显卡,如果弹出了这条信息,那还是尽可能提升 cpu 的性能能力吧。
avx2 支持需要 tf 源码在编译时加入特定的编译选项,比较麻烦。好在 github 上有别人编译好的,直接下载并用 pip 本地安装。
解决方案:彻底解决“Your CPU