前言
安装
我们需要配置一个环境来运行 Python、Jupyter Notebook、相关库以及运行本书所需的代码,以快速入门并获得动手学习经验。
安装 Miniconda
最简单的方法就是安装依赖Python 3.x的Miniconda。 如果已安装conda,则可以跳过以下步骤。访问Miniconda网站,根据Python3.x版本确定适合的版本。Miniconda — Anaconda documentationhttps://docs.anaconda.com/miniconda/
友友们我们要下载安装的是Miniconda,千万不要再去下一边Anaconda哈~
如果我们使用macOS,假设Python版本是3.9(我们的测试版本),将下载名称包含字符串“MacOSX”的bash脚本,并执行以下操作:
# 以Intel处理器为例,文件名可能会更改
sh Miniconda3-py39_4.12.0-MacOSX-x86_64.sh -b
如果我们使用Linux,假设Python版本是3.9(我们的测试版本),将下载名称包含字符串“Linux”的bash脚本,并执行以下操作:
# 文件名可能会更改
sh Miniconda3-py39_4.12.0-Linux-x86_64.sh -b
接下来,初始化终端Shell,以便我们可以直接运行conda
。
~/miniconda3/bin/conda init
现在关闭并重新打开当前的shell。并使用下面的命令创建一个新的环境:
conda create --name d2l python=3.9 -y
现在激活
d2l
环境:
conda activate d2l
安装深度学习框架和d2l
软件包
在安装深度学习框架之前,请先检查计算机上是否有可用的GPU。 例如可以查看计算机是否装有NVIDIA GPU并已安装CUDA。 如果机器没有任何GPU,没有必要担心,因为CPU在前几章完全够用。 但是,如果想流畅地学习全部章节,请提早获取GPU并且安装深度学习框架的GPU版本。
我们可以按如下方式安装PyTorch的CPU或GPU版本:
pip i