乙巳蛇年伊始,DeepSeek-R1大模型横空出世,凭借“四两拨千斤”的创新实力火爆出圈,在人工智能领域引起了强烈反响。各行各业的企业、开发者纷纷在本地部署DeepSeek,争先恐后“品尝”这道“大模型盛宴”。
为了赶上这波热潮,笔者在机房找到一台AI服务器,机型为浪潮信息NF5466G7,摩拳擦掌开始部署DeepSeek。在笔者看来,本地化部署DeepSeek主要面临兼容性与安全性两方面难题。
- GPU、服务器等底层硬件的复杂适配工作是第一个难题。GPU适配涉及到驱动程序的兼容性、CUDA与cuDNN版本的匹配以及GPU之间的通信与负载均衡等。而服务器适配则包括CPU与内存的协调、存储系统的优化以及网络带宽的保障等。这些因素相互交织、提高了适配复杂性,这增加了DeepSeek部署的资源与时间投入,还可能延长DeepSeek的上线时间,导致企业在快速变化的商业环境中错过市场机会。
- 训练与推理过程中的数据泄露风险、数据安全问题等也是本地化部署DeepSeek的痛点问题。比如,本地化部署Deepseek往往需要储存、处理大量敏感数据,比如个人隐私、商业秘密等,上述数据的泄露将给个人或者企业造成重大损失。再例如,本地化部署DeepSeek需要定期、及时地修复已知安全漏洞,以规避系统安全隐患,这无疑增加了维护成本。
为了无忧使用DeepSeek,笔者摸排了现有各类部署方案,发现云峦KeyarchOS本地化部署DeepSeek方案与笔者的场景与需求较为吻合。首先,该方案的底层硬件是浪潮信息AI服务器,与笔者现有的测试机器一致;其次,方案在操作系统选型上采取了同一家厂商研发的KeyarchOS,能够与服务器、主流GPU等硬件天然兼容;再次,方案适配了CUDA、GPU驱动等关键AI组件,满足笔者的大模型部署需求。
下面,笔者将根据自己的实际体验,简要介绍选取这一方案的原因,并提供保姆级部署教程,详细介绍笔者如何通过Ollama框架,实现DeepSeek R1的在线、离线本地化部署,以及部署过程中的常见问题与解决方法。
云峦KeyarchOS本地化部署DeepSeek方案架构
一、选择这一方案的原因?
- 服务器及GPU广泛支持:方案选用云峦KeyarchOS作为底层操作系统,天然兼容NF5468G7、NF5468H7等主流AI服务器,并全面支持国内外主流消费级与服务器级GPU,能够支撑DeepSeek在不同计算环境下顺利运行。灵活的硬件兼容性,减少了笔者在部署DeepSeek时的适配成本。
- 灵活扩展且一键部署:针对不同的算力规模,方案将动态推荐适配的DeepSeek版本,有助于缩短部署周期。此外,最令笔者这种“懒人”动心的是,方案提供了简单易用的部署脚本,可以实现DeepSeek的私有化一键部署。
- 多重防护措施保护隐私:通过云峦KeyarchOS的安全模块,方案提供了内核级无侵入式系统防护,这有助于保障本地知识库数据的全生命周期安全,防止未经授权的访问。方案还采用了机密计算与加密技术,对DeepSeek训练与推理过程涉及的敏感数据进行精准加密,降低数据泄露风险。此外,方案构建了硬件级可信执行环境(TEE),金融等高合规要求、高安全标准行业也可无忧使用。
二、“手把手”教会DeepSeek本地化部署!
以下为笔者在云峦KeyarchOS上,通过Ollama框架实现DeepSeek R1本地化部署的详细步