摘要:
随着昇腾(Ascend)AI生态的蓬勃发展,Ascend C 作为其核心的算子开发语言,正吸引着越来越多开发者的目光。本文旨在为初学者提供一份全面、深入且可实践的 Ascend C 入门指南。我们将从 Ascend C 的设计哲学讲起,深入剖析其核心概念——“双队列”与“流水线”,并通过一个完整的 Add 算子开发实例,手把手带你走通从环境配置、代码编写、编译到最终部署验证的全流程。无论你是AI算法工程师还是系统软件开发者,本文都将为你打开昇腾硬件高效编程的大门。
关键词: Ascend C, 昇腾, AI加速, 算子开发, CANN, 双队列, 流水线
引言:为什么需要 Ascend C?
在AI模型训练与推理的浪潮中,性能是永恒的主题。通用框架(如PyTorch、TensorFlow)虽然提供了便捷的高层API,但在面对特定硬件(如昇腾NPU)时,往往无法榨干其全部潜力。为了突破性能瓶颈,开发者需要深入硬件底层,编写高度优化的计算单元——即“算子(Operator)”。
传统的算子开发方式(如CUDA for GPU)学习曲线陡峭,且与昇腾NPU的架构不匹配。为此,华为推出了 Ascend C。它并非一门全新的编程语言,而是一套基于标准C++(C++17)的领域特定语言(DSL)扩展和编程范式。Ascend C 的核心目标是:
- 屏蔽硬件复杂性:通过抽象化的接口,让开发者无需关心底层指令集、内存布局等细节。
- 最大化硬件利用率:通过“双队列”和“流水线”机制,自动实现计算与数据搬运的并行,隐藏访存延迟。
- 无缝集成:开发的算子可直接被MindSpore、TensorFlow、PyTorch等主流框架调用。
理解 Ascend C,是掌握昇腾AI全栈能力的关键一步。
第一部分:Ascend C 核心概念深度解析
在动手编码之前,我们必须先理解 Ascend C 的两大基石:双队列模型 和 流水线执行。
1.1 双队列(Double Buffering Queue)模型
昇腾NPU的计算核心(AI Core)拥有独立的计算单元(Vector/Matrix Unit)和存储单元(Unified Buffer, UB)。为了实现极致的性能,Ascend C 引入了“双队列”思想来管理数据流。
- 概念:想象有两个完全相同的缓冲区(Buffer A 和 Buffer B),它们像接力赛一样交替工作。
- 工作流程:
- 阶段1:数据从全局内存(Global Memory, GM)搬运到 Buffer A,同时计算单元正在处理 Buffer B 中的旧数据。
- 阶段2:当 Buffer A 的数据就绪且 Buffer B 的计算完成时,两者角色互换。计算单元开始处理 Buffer A 的新数据,同时下一批数据开始向 Buffer B 搬运。
- 优势:这种设计巧妙地将 数据搬运(Data Movement) 和 计算(Computation) 在时间上重叠起来,有效隐藏了相对较慢的全局内存访问延迟,使计算单元始终处于忙碌状态,从而大幅提升吞吐量。
在 Ascend C 代码中,你不需要手动管理这两个缓冲区,而是通过声明 Tensor 对象并指定其位于 UB 空间,框架会自动为你处理双队列的切换逻辑。
1.2 流水线(Pipeline)执行
如果说双队列解决了单个批次内的并行问题,那么流水线则解决了多个批次之间的并行问题。
- 概念:将整个算子的执行过程划分为多个连续的阶段(Stage),例如:
CopyIn(从GM到UB)、Compute(在UB上计算)、CopyOut(从UB到GM)。 - 工作流程:
- 当第一批数据还在
Compute阶段时,第二批数据就可以开始CopyIn阶段。 - 当第一批数据进入
CopyOut阶段时,第二批数据进入Compute阶段,同时第三批数据可以开始CopyIn。
- 当第一批数据还在
- 优势:通过这种“填满-流动”的方式,不同批次的数据在不同的执行阶段并行处理,极大地提升了整体的资源利用率和吞吐量。
在 Ascend C 中,你需要通过 Pipe 对象显式地定义这些阶段,并使用 AllocTensor、Send、Recv 等API来控制数据在管道中的流动。
第二部分:环境准备与项目搭建
在开始编码前,请确保你的开发环境已正确配置。通常有两种方式:
- 物理昇腾服务器:安装了CANN(Compute Architecture for Neural Networks)工具包。
- Docker容器:使用官方提供的Ascend C开发镜像。
本文假设你已成功配置好环境。接下来,我们创建一个标准的Ascend C项目结构:
add_operator/
├── CMakeLists.txt # 构建脚本
├── src/
│ ├── kernel/
│ │ └── add_kernel.cpp # Ascend C 算子内核代码
│ └── host/
│ │ └── add_host.cpp # Host侧调度代码(可选)
└── test/
└── test_add.py # Python测试脚本
第三部分:手把手实现 Add 算子
现在,让我们进入最核心的部分——编写一个 Add 算子。该算子的功能是将两个输入张量 x 和 y 相加,得到输出张量 z,即 z = x + y。
3.1 定义算子内核函数
Ascend C 算子的核心逻辑写在一个特殊的内核函数中。该函数必须遵循特定的签名,并使用Ascend C提供的API。
// src/kernel/add_kernel.cpp
#include "acl/acl.h"
#include "ascendc.h" // Ascend C 核心头文件
using namespace ascendc;
// 定义块大小(Block Size),这是调度的基本单位
constexpr int32_t BLOCK_SIZE = 8; // 通常设为16或32,这里为了演示设为8
// 内核函数入口
extern "C" __global__ __aicore__ void add_custom(GM_ADDR x, GM_ADDR y, GM_ADDR z, uint32_t total_size) {
// 1. 初始化管道(Pipe)
// Pipe用于管理数据在GM和UB之间的流动
Pipe pipe;
pipe.InitBuffer(); // 初始化管道所需的内部缓冲区
// 2. 计算当前核心(Core)需要处理的数据总量
// GetBlockNum() 获取总的block数量
// GetBlockIdx() 获取当前block的索引
uint32_t core_num = GetBlockNum();
uint32_t core_idx = GetBlockIdx();
uint32_t each_core_size = (total_size + core_num - 1) / core_num; // 向上取整
uint32_t this_core_start = each_core_size * core_idx;
uint32_t this_core_end = (this_core_start + each_core_size) > total_size ? total_size : (this_core_start + each_core_size);
uint32_t this_core_process = this_core_end - this_core_start;
if (this_core_process == 0) {
return; // 如果没有分配到数据,直接返回
}
// 3. 声明统一缓冲区(UB)中的Tensor
// 这里我们为x, y, z各声明一个UB Tensor
// Shape: {each_core_size} 表示一维张量
// Format::ND 是默认的张量格式
// DataType::FLOAT32 指定数据类型
Tensor ub_x(pipe, {each_core_size}, Format::ND, DataType::FLOAT32);
Tensor ub_y(pipe, {each_core_size}, Format::ND, DataType::FLOAT32);
Tensor ub_z(pipe, {each_core_size}, Format::ND, DataType::FLOAT32);
// 4. 计算需要循环的次数
// Ascend C要求一次搬运和计算的数据量是BLOCK_SIZE的倍数
uint32_t loop_count = (this_core_process + BLOCK_SIZE - 1) / BLOCK_SIZE;
uint32_t remainder = this_core_process % BLOCK_SIZE;
if (remainder == 0) {
remainder = BLOCK_SIZE;
}
// 5. 主循环:实现流水线
for (uint32_t i = 0; i < loop_count; i++) {
// 5.1 计算本次循环处理的数据偏移量
uint32_t offset = i * BLOCK_SIZE;
uint32_t current_size = (i == loop_count - 1) ? remainder : BLOCK_SIZE;
// 5.2 数据搬运阶段 (CopyIn)
// 将GM中的数据搬运到UB
DataCopy(ub_x[offset], x[this_core_start + offset], current_size);
DataCopy(ub_y[offset], y[this_core_start + offset], current_size);
// 5.3 计算阶段 (Compute)
// 调用Ascend C内置的vadd指令进行向量化加法
// vadd(dst, src0, src1, count)
vadd(ub_z[offset], ub_x[offset], ub_y[offset], current_size);
// 5.4 数据搬出阶段 (CopyOut)
// 将UB中的结果写回GM
DataCopy(z[this_core_start + offset], ub_z[offset], current_size);
}
}
代码详解:
GM_ADDR: 宏定义,代表全局内存地址。Pipe: 流水线控制器,负责管理UB的分配和数据流。GetBlockNum()/GetBlockIdx(): 用于多核并行。昇腾AI Core可以被划分为多个逻辑块(Block),每个块独立执行内核函数的一部分。Tensor: Ascend C的核心数据结构,封装了数据指针、形状、数据类型等信息。构造时传入Pipe对象,表明该Tensor位于UB中。DataCopy: 高效的数据搬运函数,用于在GM和UB之间传输数据。vadd: Ascend C提供的向量化加法指令,能一次性处理多个数据元素,极大提升计算效率。
3.2 编写Host侧代码(可选)
对于简单的算子,MindSpore等框架可以直接通过Custom API调用内核。但为了完整性,我们也展示如何编写Host侧代码来加载和调度算子。
// src/host/add_host.cpp
#include "acl/acl.h"
#include "acl_rt.h"
#include "acl_mdl.h"
// 此处省略详细的ACL(Ascend Computing Language)API调用
// 主要步骤包括:
// 1. aclInit()
// 2. 创建Context和Stream
// 3. 加载*.o(由Ascend C编译生成的二进制文件)
// 4. 设置内核参数(x, y, z的地址和total_size)
// 5. 调用aclrtLaunchKernel()启动内核
// 6. 同步Stream,等待内核执行完毕
// 7. 释放资源,aclFinalize()
在实际项目中,这部分通常由框架自动完成,开发者只需关注内核逻辑。
3.3 编译与构建
Ascend C 项目使用 cmake 进行构建。关键在于链接Ascend C的静态库并使用特定的编译器(aarch64-linux-gnu-g++)。
# CMakeLists.txt
cmake_minimum_required(VERSION 3.14)
project(add_operator)
set(CMAKE_CXX_STANDARD 17)
# 查找Ascend C库路径
find_package(PkgConfig REQUIRED)
pkg_check_modules(ASCEND_C REQUIRED ascendc)
# 包含头文件
include_directories(${ASCEND_C_INCLUDE_DIRS})
# 添加内核源文件
add_library(add_kernel STATIC src/kernel/add_kernel.cpp)
# 设置交叉编译
set(CMAKE_CXX_COMPILER aarch664-linux-gnu-g++)
set_target_properties(add_kernel PROPERTIES COMPILE_FLAGS "-fPIC")
# 链接Ascend C库
target_link_libraries(add_kernel ${ASCEND_C_LIBRARIES})
执行 cmake . && make 后,将生成 libadd_kernel.a 或 add_kernel.o 文件。
3.4 Python端测试与验证
最后,我们在Python中使用MindSpore的Custom算子功能来调用我们编写的Add算子,并与原生add操作进行结果对比。
# test/test_add.py
import numpy as np
import mindspore as ms
from mindspore import ops, Tensor
from mindspore.ops import Custom
# 1. 定义自定义算子
def custom_add_func(x, y):
output = ops.zeros_like(x)
# 指向编译好的.o文件
op = Custom(
"./add_kernel.o",
out_shape=lambda x, y: x,
out_dtype=lambda x, y: x,
func_type="aot", # Ahead-of-Time compilation
reg_format="ND"
)
return op(x, y, output)
# 2. 准备测试数据
input_x = Tensor(np.random.randn(1024).astype(np.float32))
input_y = Tensor(np.random.randn(1024).astype(np.float32))
# 3. 执行自定义算子和原生算子
output_custom = custom_add_func(input_x, input_y)
output_native = input_x + input_y
# 4. 验证结果
np.testing.assert_allclose(output_custom.asnumpy(), output_native.asnumpy(), rtol=1e-3)
print("✅ 自定义Add算子验证通过!")
运行此脚本,如果看到成功的提示,恭喜你!你已经成功完成了你的第一个Ascend C算子。
第四部分:性能分析与优化方向
虽然我们的Add算子功能正确,但仍有很大的优化空间:
- 向量化程度:
BLOCK_SIZE的选择直接影响vadd指令的效率。应根据具体硬件规格选择最优值(如32)。 - 内存对齐:确保GM中的数据地址是32字节对齐的,可以避免非对齐访问带来的性能损失。
- 减少UB占用:对于更复杂的算子,UB空间是宝贵的资源。可以通过分块(Tiling)策略,将大张量切分成小块进行处理。
- 融合算子:如果后续操作也是逐元素的(如
Add后接Relu),可以将它们融合到一个内核中,避免中间结果写回GM,节省带宽。
结语
本文通过一个具体的Add算子实例,系统性地介绍了Ascend C的编程范式、核心概念和开发流程。从理论到实践,我们看到了Ascend C如何通过“双队列”和“流水线”两大利器,帮助开发者轻松驾驭昇腾NPU的强大算力。这只是一个开始,更复杂的算子(如Conv2D、MatMul)开发将涉及更精妙的分块策略和数据重排技巧。希望本文能成为你昇腾AI开发之旅的坚实起点。
2025年昇腾CANN训练营第二季,基于CANN开源开放全场景,推出0基础入门系列、码力全开特辑、开发者案例等专题课程,助力不同阶段开发者快速提升算子开发技能。获得Ascend C算子中级认证,即可领取精美证书,完成社区任务更有机会赢取华为手机,平板、开发板等大奖。
报名链接:https://www.hiascend.com/developer/activities/cann20252
1027

被折叠的 条评论
为什么被折叠?



