在自然资源管理、城市规划、灾害应急等领域,遥感影像解译长期面临"效率低、精度差、成本高"的行业困境。传统人工判读模式依赖作业员逐像素分析,单幅影像处理需数小时,且复杂场景下错误率高达30%以上。面对这一痛点,中勘迈普团队历时8年研发的EasyFeature智能解译系统,通过"层次化模型+人机协同+全自动引擎"三大技术突破,实现了地理信息生产的效率革命。
技术突破一:层次化智能解译模型——破解复杂场景解译难题
传统算法难以应对城市峡谷、植被覆盖等复杂场景的干扰。EasyFeature首创"场景-目标-像素"三级分析框架:
-
场景感知层:通过云雪检测、投影差校正等技术,消除大气干扰和地形遮挡,提升影像基础质量。
-
目标识别层:融合语义分割与形状约束,对道路、建筑物等目标进行先验建模。例如,道路提取模块通过路宽约束和边缘吸附技术,实现路网自动跟踪,边界平滑度较传统方法提升40%。
-
像素优化层:采用对偶多尺度流形排序卷积网络(DM-SM-CNN),在公开数据集上实现92%的综合分类精度,城市复杂场景下建筑物提取准确率达85%。
该模型已支撑全球测图、地理国情普查等国家工程,累计处理影像超100万平方公里。
技术突破二:人机协同交互设计——让专家经验转化为AI生产力
EasyFeature独创"少量样本+自动优化"模式,将人工经验转化为可复用的算法模型:
-
智能样本训练:作业员仅需标记10-20个典型样本,系统自动生成多尺度特征模型。陕西省第二测绘院测试显示,林地、水域等一类地物提取效率从4小时/平方公里提升至1.2小时/平方公里。
-
实时交互修正:支持手绘线采集、属性快速录入等功能,错误区域一键重绘。国务院地理国情普查办评价其"人机交互模式平衡了效率与精度,成为全国普查推荐工具"。
这种设计大幅降低技术门槛,非专业用户经过2小时培训即可操作,推动解译流程从"专家主导"转向"全员参与"。
技术突破三:全自动变化检测引擎——5倍效率提升的秘密武器
针对多时相影像变化检测的虚警率高、漏检多问题,EasyFeature开发了"语义增强+三维约束"解决方案:
-
虚警抑制技术:通过特征匹配引导和对象级检测框架,将误检率从传统方法的25%降至5%以下。
-
三维联合处理:融合DSM(数字表面模型)和DEM(数字高程模型),精准识别建筑物拆除/新增。实测显示,山区输电线路巡检周期从10天缩短至5天,违法建筑检测准确率达95%。
在2023年河北洪水灾害评估中,该系统48小时内完成全省5.2万平方公里影像的洪涝范围提取,较人工效率提升5倍。
行业影响:从工具替代到决策赋能
EasyFeature的普及正在重塑地理信息产业格局:
-
成本重构:单项目人力成本降低60%,某电力公司输电线路巡检预算减少300万元/年。
-
数据增值:解译成果可直接对接GIS平台,支撑智慧城市、数字孪生等应用。
-
标准引领:被纳入自然资源部《智能解译软件推荐名录》,推动行业从"经验驱动"转向"数据驱动"。
正如中国工程院院士李德仁所言:"EasyFeature让遥感数据真正成为可计算的地理智能。"这场由AI驱动的效率革命,正在打开地理信息产业的新纪元。