随着智能遥感进入新纪元,数据处理与模型效率的挑战日益成为应用落地的关键瓶颈。 EasyFeature软件以星云空天大模型为核心,构建了基于人机智能提示学习的多模态系统。通过海量高质量数据预训练,集成了包括遥感场景分类、快速目标检测、地物分类、变化检测等在内的丰富模型库,提供端到端的智能解译能力。EasyFeature完全实现国产化自主可控,涵盖全栈软硬件支撑与训推一体化流程,确保高效安全。其极简安装、开箱即用的特性,让先进遥感智能触手可及。

星云空天大模型的核心优势主要体现在:
一是基于可变时空网格的样本数据多维表达模型技术,以动态适应不同时空尺度需求。通过构建灵活的网格结构,并可在空间分辨率或时间粒度上对其进行动态调整,解决了传统方法无法同时适应时空动态性与样本多维性融合的问题,显著提升了数据表达精度与分析效率,尤其适用于地理时空演化过程重建、土地利用变化检测及干旱监测等大规模数据处理场景。
二是“时-空-谱-类”多层次遥感影像样本精化技术,以系统性优化样本数据质量。在时间维度整合多时相遥感数据,捕捉动态变化特征以增强时间一致性判断能力;在空间维度通过多源影像空间特征强化空间分辨率与拓扑关系表达;在光谱维度变换处理,提升影像中目标的光谱特征差异化识别;在类别语义维度进行深度学习,优化地物语义分类的边界精准性及类别判别能力。通过协同四个层次的优化,解决单一维度局限性问题,提升遥感影像分析的准确性。
三是基于间接缓冲区的深度学习框架内存扩展技术,以优化深度学习模型内存使用。通过缓冲区动态管理、注意力驱动的选择性缓存、以及间接访问优化等机制,解决了深层网络因参数增长导致的内存爆炸问题,在保持模型表达能力的同时提升训练效率,尤其适用于高分辨率遥感影像处理等内存密集型任务。
四是基于记忆池的尺度通道灵活创建技术,以生成深度学习模型的动态特征。通过多尺度特征复用与注意力加权实现通道维度的自适应扩展。该技术显著降低模型参数量,并提升多尺度遥感影像任务的细粒度特征表达能力。
五是遥感多模态超长上下文预训练大模型技术,以适应大规模地理空间数据的智能解译需求。通过结合多模态特征融合与全局上下文建模能力,使得地表覆盖与建筑物变化检测查全率达90%以上,解决了传统方法在超大尺寸遥感影像处理中的局部感受野受限与语义鸿沟问题。
在核心技术突破与深度融合的驱动下,星云空天大模型已实现国产化全栈技术与工具链条的紧密打通,构建出真正实现国产化训推一体的智能引擎,为地理空间信息自主、高效、智能化的获取与分析建立了坚实的技术地基——以星辰的名义,让每一帧天空影像在国产智慧的驱动下都释放出深刻的认知之光。