
深度学习
文章平均质量分 69
啃西瓜的小煤球
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
手写数字识别
MNIST数据集 这里介绍机器学习领域最有名气的数据集之一MNIST手写数据集。在众多论文中,它经常作为实验用的数据出现。 MNIST数据集是由0到9的数字图像构成的。 训练图像有6万张,测试图像有1万张 MNIST的图像数据是28 像素× 28 像素的灰度图像(1 通道),各个像素的取值在0 到255 之间。每个图像数据都相应地标有“7”“2”“1”等标签。这里的标签可以用来计算模型识别的准确率。 读入MNIST数据集并展示一张图片代码如下: # coding: utf-8 import sys, os原创 2022-04-01 21:18:22 · 1355 阅读 · 0 评论 -
实现3层神经网络
实现简单的三层神经网络 在第2层到输出层用的激活函数和之前的隐藏层有所不同,之前的隐藏层使用的是sigmoid函数,我们定义了identity_function()函数(也称为“恒等函数”),并将其作为输出层的激活函数。恒等函数会将输入原样输出。此外输出层的激活函数用σ() 表示,不同于隐藏层的激活函数h(x)。 对于输出层所用的激活函数,回归问题可以用恒等函数,二元分类问题可以使用sigmoid函数,多元分类问题可以使用softmax函数。 何为回归问题? 回归问题是根据某个输入预测一个(连续的)原创 2022-03-30 23:00:45 · 1958 阅读 · 0 评论 -
从感知机到神经网络
从感知机到神经网络 x1、x2 是输入信号,y 是输出信号,w1、w2 是权重,神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出1。这也称为“神经元被激活” 。这里将这个界限值称为阈值,用符号θ 表示。 多层感知机可以表示非线性空间,在理论上可以表示计算机,对于复杂的函数,感知机也有能够表示它的可能性。但是感知机的缺点在于设定权重的工作,即确定合适的、能符合预期的输入和输入的权重,还是需要由人工进行。 神经网络的出现就是为了解决感知机的缺点,神经网络可以自动地从数据中学习到合原创 2022-03-30 22:10:42 · 1491 阅读 · 0 评论