llama-factory微调Qwen2.5-7B-instruct实战,看这一篇就够了!!!(含windows和linux)

一.安装llama-factory

llama-factort的网站:https://github.com/hiyouga/LLaMA-Factory
安装llama-factory很简单,打开github后滑到安装 LLaMA Factory跟着步骤走即可。

安装 LLaMA Factory
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e “.[torch,metrics]”

安装后到根目录执行

llamafactory-cli webui

可进行可视化,如下图所示:

在这里插入图片描述
即安装完成,接着进行微调。

二.开始微调。

1.数据准备:

需要将数据调整到Alpaca格式。

  • Alpaca格式:alpaca 格式最初与Stanford大学的一个研究项目相关联,该项目旨在通过少量高质量的数据来微调大型语言模型。它受到了Alpaca模型(一种基于LLaMA的指令跟随模型)的影响,该模型是在Meta AI的LLaMA基础上进行改进而来的。
    格式如下:
    {
         
         
        "instruction": "Summarize the following text.",
        "input": "Artificial intelligence (AI) is a rapidly growing field...",
        "output": "AI is an evolving technology that is growing quickly in various fields...",
        "system": "system prompt (optional
### 使用 LLaMA-FactoryQwen2.5-VL 进行微调 为了实现对 Qwen2.5-VL 的微调操作,可以参考 LLaMA-Factory 提供的相关功能以及其配置文件中的参数设置[^1]。以下是具体方法: #### 配置数据参数 在 `data_args.py` 文件中定义的数据参数部分,需调整以适配 Qwen2.5-VL 数据输入需求。例如,在指定路径时应考虑视觉语言模型特有的多模态数据结构。 ```python from dataclasses import dataclass, field @dataclass class DataArguments: dataset_name: str = field(default="my_custom_dataset", metadata={"help": "The name of the dataset to use."}) max_seq_length: int = field(default=512, metadata={"help": "Maximum sequence length."}) image_size: int = field(default=224, metadata={"help": "Image size for vision tasks."}) # 新增图像尺寸支持 ``` 上述代码片段展示了如何扩展默认参数来适应视觉任务的需求,特别是针对图像大小的设定。 #### 修改训练脚本 对于实际执行微调过程,则需要修改主训练脚本来加载预训练权重并初始化优化器等相关组件。这里假设已下载好对应版本的 Qwen 权重文件。 ```bash #!/bin/bash export MODEL_NAME_OR_PATH=qwen/Qwen2.5-VL export OUTPUT_DIR=./output_qwen_vl_finetune torchrun --nproc_per_node 4 run_clm.py \ --model_name_or_path $MODEL_NAME_OR_PATH \ --train_file ./path_to_your_training_data.json \ --validation_split_percentage 5 \ --per_device_train_batch_size 8 \ --gradient_accumulation_steps 4 \ --learning_rate 5e-5 \ --weight_decay 0.01 \ --num_train_epochs 3 \ --save_strategy epoch \ --logging_dir ./logs/qwen_vl_log \ --output_dir $OUTPUT_DIR ``` 此脚本设置了分布式运行环境,并指定了必要的超参调节选项以便更好地完成目标任务。 #### 注意事项 当处理像 Qwen2.5-VL 这样的大型多模态模型时,请务必注意硬件资源分配情况;如果显存不足可适当降低 batch size 或启用 gradient checkpointing 技术减少内存消耗。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值