flink Mysql CDC(动态加表)、postgresqlCDC 和 CDC无锁算法

本文详述了Flink与不同版本的MySQL和PostgreSQLCDC的搭配使用,包括参数调整如chunk大小和CDC模式。提到了全量快照阶段的SQL策略以及无锁算法的论文链接。此外,讨论了动态加表、SQL和API性能压测的情况,PostgreSQLCDC的更新语句行为,以及遇到的问题和解决方案,如时区错误、缺失类错误和任务关闭问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

flink 与cdc 版本使用搭配:

flink1.13.6 + flink mysql cdc 1.4.0
flink 1.16.0 + flink mysql cdc 2.3.0
flink 1.16.0 + flink mysql cdc 2.4.0
flink 1.16.0 + flink postgresql cdc 2.3.0

flink 1.13.6 + flink mysql cdc 2.3.0 : 没有报错,没有数据,估计是兼容有问题

flink cdc

参数说明

1、调整chunck大小 : scan.incremental.snapshot.chunk.size
2、设置cdc模式:scan.startup.mode【initial(默认)、latest-offset】
3、支持chunk key 列设置,默认是第一个字段:scan.incremental.snapshot.chunk.key-column
官网:https://ververica.github.io/flink-cdc-connectors/master/content/connectors/postgres-cdc.html

原理分析

1、cdc mysql 全量快照阶段split sql :SELECT * FROM cdc_db.tablename WHERE id >= ? AND NOT (id = ?) AND id <= ?;
备注:id 是主键id

(DBLog)无锁算法论文

链接地址:https://arxiv.org/pdf/2010.12597.pdf , 对此算法感兴趣的可以看这位大佬的分享:https://zhuanlan.zhihu.com/p/600303844

论文部分摘要理解:

  • 全量阶段:
    1、flink cdc 任务启动后按设置的chunk size切分数据,sql如下:
    (sql:SELECT * FROM cdc_db.tablename WHERE id >= ? AND NOT (id = ?) AND id <= ?; )
    2、同时会启动读取binlog任务,读取chunk对应的binlog,通过binlog对 select chunk的数据做合并操作,此操作是合并在期间执行了update、delete操作,保证insert-only

  • 增量阶段:
    1、不断追加数据
    在这里插入图片描述
    在这里插入图片描述

mysql cdc

cdc api 动态加表

1、启动任务,复制checkpoint路径
在这里插入图片描述2、新增监听的表到tableList(可以使用同一个jar包,在外部传参动态加表)
3、从checkpoint初重启任务即可

flink cdc sql 性能压测

1、cdc mysql sink to kafka :一个takmanager , 4个

<think>好的,用户想了解Flink CDC的相关信息使用方法,特别是使用教程原理介绍。我需要根据提供的引用资料来组织回答。首先,我需要明确Flink CDC的定义作用。根据引用[1],Flink CDC是用于数据捕获实时数据同步的工具,基于Flink的流处理能力。接下来,原理部分需要解释它的工作机制,比如连接器Debezium的关系,以及Flink的处理流程。引用[2][3]提到了Flink CDC的版本演变开源地址,这里需要说明不同版本的区别,特别是2.x3.x的改进,如无算法并行读取。 然后,使用教程部分要分步骤说明环境准备、依赖配置、代码示例等。引用[4]提到使用SQL CLI进行操作,可以给出SQL示例。同时,用户可能需要代码示例,比如如何定义MySQL,这里要确保语法正确,使用$$...$$格式。注意事项部分要包括版本兼容性、性能调优等,引用[1]中的Debezium格式引用[3]中的项目地址可以作为补充。 最后生成相关问题,覆盖应用场景、优化方法、与其他工具对比等。检查是否符合系统级指令,比如行内公式是否正确,独立公式是否单独成段,引用标识是否添。确保回答结构清晰,分点说明,并正确引用相关资料。需要注意用户可能对Flink CDC的具体实现细节实际应用感兴趣,所以需要详细说明原理使用步骤,同时提供实际代码示例帮助理解。</think>### Flink CDC 原理与使用详解 #### 一、核心概念 1. **CDC 定义**:变更数据捕获(Change Data Capture)技术用于捕捉数据库的增删改操作,实现实时数据同步[^1] 2. **Flink CDC 定位**:基于 Apache Flink 构建的实时数据集成工具,支持全量+增量数据同步,兼容多种数据库[^3] #### 二、技术原理 1. **架构组成**: - 基于 Debezium 引擎捕获数据库变更日志 - 通过 Flink 流处理引擎实现数据转换与分发 - 支持 MySQL、PostgreSQL、Oracle 等常见数据库 2. **核心机制**: ```mermaid graph LR DB[(数据库)] -->|Binlog| Debezium Debezium -->|CDC Events| Flink Flink -->|处理后的数据| Sink[(目标系统)] ``` 3. **版本演进**: - 1.x:单并行度读取,全量阶段 - 2.x:支持并行读取,无算法(parallel snapshot) - 3.x:增强 Exactly-Once 语义,优化内存管理 #### 三、使用教程 **步骤1:环境准备** ```sql -- 创建 MySQL(使用 Flink SQL) CREATE TABLE mysql_source ( id INT, name STRING, PRIMARY KEY(id) NOT ENFORCED ) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'localhost', 'port' = '3306', 'username' = 'root', 'password' = '123456', 'database-name' = 'test_db', 'table-name' = 'user_table' ); ``` [^4] **步骤2:数据消费** ```sql -- 创建 Kafka 目标 CREATE TABLE kafka_sink ( user_id INT, user_name STRING ) WITH ( 'connector' = 'kafka', 'topic' = 'user_events', 'properties.bootstrap.servers' = 'localhost:9092', 'format' = 'json' ); -- 数据管道 INSERT INTO kafka_sink SELECT id AS user_id, name AS user_name FROM mysql_source; ``` #### 四、注意事项 1. **版本兼容性**:Flink 1.13+ 推荐使用 CDC 2.x 版本[^2] 2. **性能调优**: - 调整`server-id`范围避免冲突 - 合理设置`chunk-size`(默认8096) - 启用`parallelism`进行并行读取 3. **数据格式**:采用 Debezium 标准 JSON 格式,包含以下字段: ```json { "before": {...}, "after": {...}, "source": {...}, "op": "c/u/d", "ts_ms": 1629789287100 } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值