647. 回文子串
问题描述
给定一个字符串 s
,计算字符串中回文子串的数量。不同起始位置或结束位置的子串,即使内容相同也被视为不同的子串。
示例:
输入: "abc"
输出: 3
解释: 三个回文子串: "a", "b", "c"
输入: "aaa"
输出: 6
解释: 六个回文子串: "a", "a", "a", "aa", "aa", "aaa"
算法思路
方法一:动态规划(DP 数组)
- 状态定义:
dp[i][j]
表示子串s[i..j]
是否为回文串。
- 状态转移:
- 当
s[i] != s[j]
时:dp[i][j] = false
- 当
s[i] == s[j]
时:- 若子串长度 ≤ 2(
j - i < 2
),则为回文串。 - 否则取决于内部子串:
dp[i][j] = dp[i+1][j-1]
- 若子串长度 ≤ 2(
- 当
- 遍历顺序:
- 按子串长度从小到大遍历,确保状态转移时
dp[i+1][j-1]
已计算。
- 按子串长度从小到大遍历,确保状态转移时
方法二:中心扩展法(空间优化)
-
核心思想
遍历所有可能的回文中心(单个字符或两个字符之间),从中心向两边扩展,判断是否形成回文子串。 -
中心点计算
- 长度为
n
的字符串有2n-1
个中心:n
个单字符中心(如"a"
的中心是a
)n-1
个双字符中心(如"aa"
的中心在两个a
之间)
- 长度为
-
扩展规则
- 设中心索引为
center
(范围[0, 2n-2]
) - 左边界
left = center / 2
- 右边界
right = left + center % 2
- 向两边扩展:
left--
和right++
,直到字符不匹配或越界
- 设中心索引为
代码实现
方法一:动态规划(DP 数组)
class Solution {
public int countSubstrings(String s) {
if (s == null || s.isEmpty()) return 0;
int n = s.length();
boolean[][] dp = new boolean[n][n]; // dp[i][j] 表示 s[i..j] 是否为回文串
int count = 0; // 回文子串计数
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < n; i++) {
dp[i][i] = true;
count++;
}
// 按子串长度从小到大遍历(从 2 到 n)
for (int len = 2; len <= n; len++) {
for (int i = 0; i <= n - len; i++) {
int j = i + len - 1; // 子串结束位置
// 首尾字符相同
if (s.charAt(i) == s.charAt(j)) {
// 子串长度 ≤ 2 或 内部子串是回文串
if (len == 2 || dp[i + 1][j - 1]) {
dp[i][j] = true;
count++;
} else {
dp[i][j] = false;
}
} else {
dp[i][j] = false; // 首尾不同,不是回文
}
}
}
return count;
}
}
方法二:中心扩展法(空间优化)
class Solution {
public int countSubstrings(String s) {
if (s == null || s.isEmpty()) return 0;
int n = s.length();
int count = 0;
// 遍历所有可能的中心点(共 2n-1 个)
for (int center = 0; center < 2 * n - 1; center++) {
// 根据中心点计算左右起始位置
int left = center / 2;
int right = left + center % 2; // 奇数中心:left=right;偶数中心:right=left+1
// 从中心向两边扩展
while (left >= 0 && right < n && s.charAt(left) == s.charAt(right)) {
count++; // 找到一个新的回文子串
left--; // 向左扩展
right++; // 向右扩展
}
}
return count;
}
}
算法分析
- 时间复杂度:
- 两种方法均为 O(n²),动态规划嵌套两层循环,中心扩展法遍历 2n-1 个中心点。
- 空间复杂度:
- 动态规划:O(n²),需要二维 DP 数组。
- 中心扩展:O(1),仅使用常数空间。
算法过程
输入:s = "abc"
- 动态规划:
- 初始化:
dp[0][0]=dp[1][1]=dp[2][2]=true
(计数=3) - 长度 2:
[0,1]
:“ab” →'a'!='b'
→ 不计[1,2]
:“bc” →'b'!='c'
→ 不计
- 长度 3:
[0,2]
:“abc” →'a'!='c'
→ 不计
- 结果:3
- 初始化:
输入:s = "aaa"
- 中心扩展:
- 中心点 0(
left=0, right=0
):扩展 →[0,0]="a"
(计数=1) - 中心点 1(
left=0, right=1
):扩展 →[0,1]="aa"
→[-1,2]
停止(计数=2) - 中心点 2(
left=1, right=1
):扩展 →[1,1]="a"
,[0,2]="aaa"
(计数=4) - 中心点 3(
left=1, right=2
):扩展 →[1,2]="aa"
→[0,3]
停止(计数=5) - 中心点 4(
left=2, right=2
):扩展 →[2,2]="a"
(计数=6) - 结果:6
- 中心点 0(
测试用例
public static void main(String[] args) {
Solution solution = new Solution();
// 测试用例1: 标准示例
String s1 = "abc";
System.out.println("Test 1: " + solution.countSubstrings(s1)); // 3
// 测试用例2: 连续相同字符
String s2 = "aaa";
System.out.println("Test 2: " + solution.countSubstrings(s2)); // 6
// 测试用例3: 单字符
String s3 = "a";
System.out.println("Test 3: " + solution.countSubstrings(s3)); // 1
// 测试用例4: 空字符串
String s4 = "";
System.out.println("Test 4: " + solution.countSubstrings(s4)); // 0
// 测试用例5: 较长回文串
String s5 = "ababa";
System.out.println("Test 5: " + solution.countSubstrings(s5)); // 9
}
关键点
- 动态规划核心:
- 状态定义:
dp[i][j]
表示子串s[i..j]
是否为回文。 - 状态转移:首尾字符相同且内部子串为回文(或长度≤2)。
- 状态定义:
- 中心扩展核心:
- 中心点类型:字符位置(奇长度)和字符间隙(偶长度)。
- 扩展条件:左右字符相同则继续扩展。
- 边界处理:
- 空字符串直接返回 0。
- 单字符字符串有 1 个回文子串。
常见问题
-
动态规划中为什么按
长度
遍历?
确保计算dp[i][j]
时,其依赖的子问题dp[i+1][j-1]
已解决。 -
中心扩展法如何避免重复计数?
每个中心点独立扩展,自然覆盖所有不重复的回文子串。 -
两种方法如何选择?
- 动态规划:思路直接,但空间占用高。
- 中心扩展:空间效率高,代码更简洁。