
AI
文章平均质量分 88
一个憨憨coder
热爱
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Coze、N8N、Dify
Dify、N8N、Coze 三大平台对比 Dify专注于AI应用开发,提供LLM模型集成、RAG知识库和API部署,适合企业级AI解决方案;N8N是开源自动化工具,擅长跨系统集成和复杂工作流编排,适合技术团队实现业务流程自动化;Coze是字节推出的轻量级Bot平台,可快速创建聊天机器人并发布至飞书/微信等平台,适合个人用户和简单场景。三者定位不同:Dify是AI应用工厂,N8N是万能自动化工具,Coze则是Bot快速搭建平台。选择时需根据需求决定,复杂场景可组合使用Dify和N8N。原创 2025-06-12 14:47:22 · 479 阅读 · 0 评论 -
Spring AI 实现 RAG
Spring AI框架实现RAG(检索增强生成)技术,整合了信息检索与生成模型,用于构建智能问答系统。该方案采用Spring Boot框架,支持多种大语言模型(如OpenAI、Qwen)和向量数据库(Elasticsearch)。核心流程包括:使用Tika读取多格式文档并向量化存储,进行相似性搜索匹配问题,通过提示词模板优化LLM生成质量。配置文件中可自定义嵌入模型、向量维度和相似性算法。Spring AI的模块化设计简化了RAG实现,但需注意版本兼容性和向量维度匹配问题。原创 2025-06-12 11:48:12 · 1090 阅读 · 0 评论 -
Agent(智能体)
Agent(智能体)原创 2025-06-10 17:35:03 · 846 阅读 · 0 评论 -
MCP 和 Function Calling
MCP 和 Function Calling原创 2025-06-10 15:33:12 · 817 阅读 · 0 评论 -
向量(Vector)
向量(Vector)原创 2025-06-09 16:37:40 · 907 阅读 · 0 评论 -
嵌入模型 与 向量数据库
嵌入模型 与 向量数据库原创 2025-06-09 15:43:21 · 1465 阅读 · 0 评论 -
向量数据库 简介
向量数据库是现代AI系统中的关键组件,广泛应用于检索增强生成(RAG)、语义搜索、推荐系统、图像检索和自然语言处理等领域。其核心功能是高效存储和查询高维向量数据,通常通过深度学习模型将非结构化数据转换为向量嵌入。向量数据库具备向量存储、相似度检索、元数据支持、高性能和分布式扩展等核心能力。常见向量数据库包括FAISS、Qdrant、Weaviate、Pinecone、Milvus、Chroma和Redis等,各有特点和适用场景。向量数据库的工作流程包括数据嵌入、向量化、存储和相似性检索。选型时需根据具体场景原创 2025-05-15 15:17:28 · 649 阅读 · 0 评论 -
RAG 简介
**RAG(检索增强生成)**是一种结合信息检索与语言模型生成能力的架构,通过从外部知识库动态获取信息,提升回答的准确性和时效性。其核心思想是弥补传统语言模型(LLM)的静态知识限制,减少“幻觉”并增强领域相关任务的表现。RAG的基本流程包括用户提问、语义检索、上下文拼接和生成回答。其核心组件涵盖文档加载、文本分割、向量化、向量存储、检索器、提示模板和语言模型。LangChain4j提供了对RAG的完整支持,包括文档加载、文本分割、嵌入模型、向量存储、检索器和提示模板等模块。通过Spring Boot示例,原创 2025-05-15 15:02:47 · 1023 阅读 · 0 评论 -
LangChain4j 简介
LangChain4j 是一个专为 Java 和 Kotlin 开发者设计的类库,旨在简化大型语言模型(LLMs)在应用程序中的集成。它基于 LangChain 概念,支持构建聊天机器人、问答系统、自动化代理等应用。核心组件包括 Model、PromptTemplate、OutputParser、Retrieval、Agent、Memory 和 Tool,支持多种模型和服务的集成,如 OpenAI、Azure OpenAI、Anthropic 等。LangChain4j 采用模块化架构,易于扩展和定制,适合原创 2025-05-15 14:47:33 · 663 阅读 · 0 评论 -
使用Spring AI 构建MCP服务
Spring AI 中的 MCP(Model Calling Protocol)是一种标准化的模型调用协议,支持通过统一接口与不同模型服务交互。本文详细介绍了如何在 Spring AI 中配置 MCP Server 和 MCP Client。MCP Server 基于 WebFlux,通过 @Tool 注解定义服务方法,并配置 ToolCallbackProvider 提供回调支持。MCP Client 则通过 OllamaChatModel 与模型交互,并集成 MCP Server 提供的工具回调功能。项原创 2025-05-12 09:21:29 · 1414 阅读 · 0 评论 -
Spring AI 接入本地大模型
本文介绍了如何在 Spring Boot 项目中通过 Spring AI 接入本地部署的 Ollama + Qwen3-72B 模型。首先,确保 Ollama 和 Qwen3-72B 已正确安装并运行,且具备 JDK 17+ 和 Spring Boot 3.x 环境。接着,在 pom.xml 中添加 Spring AI 和 Ollama 的依赖,并在 application.properties 中配置 Ollama 服务地址。然后,编写 Qwen3Service 调用模型,并通过 Qwen3Control原创 2025-05-09 09:32:59 · 605 阅读 · 0 评论 -
Ollama 安装Qwen3 系列
本文介绍了如何使用 Docker 安装 Ollama 并部署 Qwen3 系列模型(如 Qwen3、Qwen3-72B 等)。首先,确保系统已安装 Docker,并推荐使用 GPU 支持以运行大模型。接着,通过 Docker 拉取并启动 Ollama 容器,检查服务状态。Ollama 支持自动拉取主流模型,如 Qwen3,但也可手动部署。手动部署步骤包括下载模型、转换为 GGUF 或 GGML 格式、创建 Modelfile 文件,并通过 Ollama 加载和运行模型。最后,可通过 REST API 调用模原创 2025-05-09 09:30:07 · 2007 阅读 · 0 评论