Leetcode Hot100最大子数组和(动态规划)

题目链接 最大子数组和

思路:动态规划

计算以第i个数为最后一个数的子数组的和
状态转移方程:
d p [ i ] = m a x ( d p [ i − 1 ] , d p [ i − 1 ] + n u m s [ i ] ) dp[i] = max(dp[i-1],dp[i-1]+nums[i]) dp[i]=max(dp[i1],dp[i1]+nums[i])
若前面数之和<0,则取nums[i]即可
同时求dp数组中的最大值即为答案
状态转移推导思路有一个很好的链接动态规划

代码实现


class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        size = len(nums)
        if size==0:
            return 0
        dp = [0 for _ in range(size)]#初始化一个长度为 size 的数组
        dp[0] = nums[0]
        for i in range(1,size):
            if dp[i-1]<0:
                dp[i] = nums[i]
            else:
                dp[i] = nums[i]+dp[i-1]
        return max(dp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值