浅读 Natural Language Generation Model for Mammography Reports Simulation
这是一篇报告生成 去伪 的文章,重点看生成报告的 真实性
Abstract
Extending the size of labeled corpora of medical reports is a major step towards a successful training of machine learning algorithms. Simulating new text reports is a key solution for reports augmentation, which extends the cohort size. However, text generation in the medical domain is challenging because it needs to preserve both content and style that are typical for real reports, without risking the patients’ privacy. In this paper, we present a conditioned LSTM-RNN architecture for simulating realistic mammography reports. We evaluated the performance by analyzing the characteristics of the simulated reports and classifying them into benign and malignant classes. An