springsecurity注意事项

本文介绍了在Spring Boot项目中,如何配置MyBatis-Plus进行日志打印,解决因事务导致的异常提示,以及面对JWT密钥长度错误和Redis缓存对象报错的问题。提供了详细的错误原因分析和解决方案,包括在方法上添加@Transactional注解,检查密码是否正确,调整JWT密钥长度,以及确保实体类实现Serializable接口。此外,还分享了项目源码下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.一定要在配置中加mybatis打印日志配置:

mybatis-plus:
  configuration:
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl

2.出现
在这里插入图片描述
不需要管,这是因为事务问题,在对应的方法上加 @Transactional,也可不加,在测试中出现
在这里插入图片描述
先去看看密码对不对,后台没有提示,原因在UserDetailsServiceImpl中没有return 异常,是throw出去的。
在这里插入图片描述
3.出现 Last unit does not have enough valid bits错误
这是因为jwt的原因:
jwt_key的长度不能等于9,也是最坑的一点。可大于9或者小于9。

4.出现 DefaultSerializer requires a Serializable payload but received an object of type
这是因为redis缓存对象的时候执行语句valueOperations.set(user1.getUserName() , user1); 时候出现了这个错误
解决办法:在这里插入图片描述
实体类继承 Serializable

项目下载地址

https://gitee.com/minerhaoxue/spring-security.git**
内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

慕孑晨

请大家多多支持,后续不断更新

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值