牛顿插值法的python程序

import numpy as np

def newton_interpolation(x_data, y_data, x):
    """
    牛顿插值法

    Args:
        x_data: x坐标数据,numpy数组
        y_data: y坐标数据,numpy数组
        x: 需要插值的x值

    Returns:
        插值结果y值,如果输入无效则返回None
    """
    n = len(x_data)
    if n != len(y_data):
        print("错误:x_data和y_data长度必须相同。")
        return None
    if n == 0:
        print("错误:没有提供数据点。")
        return None
    if any(np.diff(x_data) == 0):
        print("错误:x_data的值必须唯一。")
        return None


    # 计算差商表
    divided_differences = np.zeros((n, n))
    divided_differences[:, 0] = y_data
    for j in range(1, n):
        for i in range(n - j):
            divided_differences[i][j] = (divided_differences[i + 1][j - 1] - divided_differences[i][j - 1]) / (x_data[i + j] - x_data[i])

    # 牛顿插值公式
    y = y_data[0]
    term = 1
    for i in range(1, n):
        term *= (x - x_data[i - 1])
        y += divided_differences[0][i] * term

    return y


#例子
x_data = np.array([0, 1, 2, 3])
y_data = np.array([1, 3, 2, 0])
x = 1.5

y_interp = newton_interpolation(x_data, y_data, x)

if y_interp is not None:
    print(f"x = {x} 处的插值结果为: {y_interp}")


x_data = np.array([0, 1, 2])
y_data = np.array([1, 0, 1])
x = 1.5

y_interp = newton_interpolation(x_data, y_data, x)

if y_interp is not None:
    print(f"x = {x} 处的插值结果为: {y_interp}")
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值