import numpy as np
def newton_interpolation(x_data, y_data, x):
"""
牛顿插值法
Args:
x_data: x坐标数据,numpy数组
y_data: y坐标数据,numpy数组
x: 需要插值的x值
Returns:
插值结果y值,如果输入无效则返回None
"""
n = len(x_data)
if n != len(y_data):
print("错误:x_data和y_data长度必须相同。")
return None
if n == 0:
print("错误:没有提供数据点。")
return None
if any(np.diff(x_data) == 0):
print("错误:x_data的值必须唯一。")
return None
# 计算差商表
divided_differences = np.zeros((n, n))
divided_differences[:, 0] = y_data
for j in range(1, n):
for i in range(n - j):
divided_differences[i][j] = (divided_differences[i + 1][j - 1] - divided_differences[i][j - 1]) / (x_data[i + j] - x_data[i])
# 牛顿插值公式
y = y_data[0]
term = 1
for i in range(1, n):
term *= (x - x_data[i - 1])
y += divided_differences[0][i] * term
return y
#例子
x_data = np.array([0, 1, 2, 3])
y_data = np.array([1, 3, 2, 0])
x = 1.5
y_interp = newton_interpolation(x_data, y_data, x)
if y_interp is not None:
print(f"x = {x} 处的插值结果为: {y_interp}")
x_data = np.array([0, 1, 2])
y_data = np.array([1, 0, 1])
x = 1.5
y_interp = newton_interpolation(x_data, y_data, x)
if y_interp is not None:
print(f"x = {x} 处的插值结果为: {y_interp}")