目录
-
引言
-
虚拟电厂(VPP)概念与行业价值
-
实践框架与方法论
3.1 资源接入与数据治理
3.2 负荷与出力预测
3.3 协同调度与优化控制
3.4 市场交易与收益闭环 -
功率预测算法实现
4.1 需求分析
4.2 数据模型与特征工程
4.3 LSTM 预测模型设计
4.4 完整脚本与使用指南 -
部署、运维与性能优化
-
未来展望与技术趋势
-
结论
-
参考文献
1. 引言
随着新能源占比快速上升,电网调节难度剧增。**虚拟电厂(Virtual Power Plant,VPP)**通过信息技术将分散的可再生发电、储能和可灵活响应负荷聚合,为电网提供可观测、可调度、可交易的综合性资源。功率预测作为 VPP 的"晶体球",直接决定调度安全裕度和市场化收益,因此是落地实践的核心技术之一。
本文综合国内外最佳实践,提出一条面向 风‑光‑储–负荷混合场景的功率预测方法论,并给出可直接运行的 LSTM 示例脚本virtual_power_plant_prediction.py
,帮助读者快速搭建端到端