概率论—期末复习速成笔记(自用)

概率论期末复习精华:全概率、贝叶斯与分布
这篇博客汇总了概率论的重要知识点,包括概率性质、条件概率、全概率与贝叶斯公式、事件独立性、各种分布(二项、泊松、均匀、正态)及函数分布、数学期望、方差和标准差、中心极限定理,以及统计推断中的矩估计和极大似然估计等核心概念,是期末复习的理想资料。

概率论—期末速成笔记

半个学期上完一本概率论,老师脑子抽了,期末考卷子还难,真搞人心态。

概率的性质

计算公式和分配律和对偶律

image-20220519152139528

image-20220519152319510

例题

image-20220526201736550

image-20220526201749966

image-20220526201759436

条件概率

概念和性质

image-20220519153520231

例题

image-20220519153545714

在遇到交集和并集的时候,可以直接看成乘法和加法。

image-20220519153955497

古典概型

概念

image-20220519154223525

例题

image-20220519154341549

image-20220519154730393

抽签原理来自全概率公式,是指抽签的顺序和中签的概率无关,先抽跟后抽的概率都是一样的。

image-20220519155759237

全概率与贝叶斯公式(重点)

得弄清什么时候用全概率公式,什么时候用贝叶斯公式。

image-20220526201125623

image-20220526201241108

例题

image-20220526202107315

image-20220526202116022

image-20220526202240383

image-20220526202419799

image-20220526202438919

image-20220526202515284

事件的独立性

image-20220526202559143

例题

image-20220526202721608

image-20220526211123187

离散型随机变量分布律与分布函数互求

image-20220526212252390

例题

image-20220526213421294

image-20220526213643782

二项分布和泊松分布

image-20220526213908619

例题

image-20220531095913088

image-20220531100148387

image-20220531100822414

连续型随机变量概率的计算

image-20220531101201715

例题

image-20220531101732489

image-20220531101717589

image-20220531101705388

image-20220531101929618

image-20220531102108817

均匀分布

image-20220531102334451

例题

image-20220531103121932

正态分布

image-20220531103204987

image-20220531103258040

image-20220531103450105

例题

image-20220531103746100

离散型随机变量函数的分布

image-20220531104154524

例题

image-20220531104306663

连续型随机变量函数的分布

image-20220531104436878

例题

image-20220531105850151

image-20220531105908102

image-20220531110923778

image-20220531110959408

image-20220531111020918

image-20220531111158531

二维离散型随机变量的分布

image-20220601131010325

image-20220601131033432

例题

image-20220601131128461

image-20220601131231915

image-20220601131337216

二维连续型随机变量的分布

image-20220601131600169

例题

image-20220601131737647

image-20220601131851924

image-20220601131946369

image-20220601132002847

image-20220601132149503

image-20220601132355698

二维离散型随机变量函数的分布

image-20220601132843487

例题

image-20220601133251246

image-20220601133435930

image-20220601133520032

image-20220601133617579

二维连续型随机变量函数的分布

image-20220601135050995

image-20220601135152596

image-20220601135232677

image-20220601135259584

例题

image-20220601135447086

image-20220601135723480

image-20220601135756275

数学期望

image-20220601151421158

例题

image-20220601151608679

image-20220601151811021

方差和标准差

image-20220601152117671

例题

image-20220601152229780

image-20220601152245543

image-20220601152436677

image-20220601152447400

image-20220601152512543

常用分布的期望和方差

image-20220601152631666

例题

image-20220601152813709

image-20220601153126206

image-20220601153412253

协方差和相关系数

image-20220601153738974

例题

image-20220601153826285

image-20220601154028979

image-20220607103803403

image-20220607103825038

image-20220607104045095

image-20220607104052744

image-20220607104113738

image-20220607104229153

image-20220607104240530

image-20220607104300998

image-20220607104323844

image-20220607104332514

中心极限定理

就是用正态分布来近似一般的发布。

image-20220607105320295

例题

image-20220607105622282

image-20220607105909823

image-20220607105958819

三大分布

image-20220607110210292

例题

image-20220607110427100

image-20220607110530558

image-20220607110654092

image-20220607110726690

矩估计

image-20220607110902729

image-20220607110949820

例题

image-20220607111227496

image-20220607111326174

image-20220607111412456

极大似然估计

image-20220607111522146

image-20220607111534563

例题

离散

image-20220607111730964

image-20220607111745186

连续

image-20220607111821773

假设检验

image-20220607111943253

image-20220607112001765

image-20220607112031067

image-20220607112052841

例题

image-20220607112338018

image-20220607112323094

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炒饭多加个蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值