EM算法用于估计含有隐含变量的概率模型的参数,是一种迭代式的求解方法。K-Means和高斯混合模型都算是EM算法使用的经典案例。EM算法包括两个主要的步骤:E步(求期望)和M步(期望最大化),以下是EM算法的手写推导过程: