介绍
定义:深度学习是一类基于人工神经网络的机器学习技术, 通过构建具有多个层次的神经网络模型,让计算机自动从 大量数据中学习特征和模式。它模拟人类大脑的神经元结 构,通过大量神经元之间的相互连接和信息传递,实现对 复杂数据的学习和理解。
Tips:与传统机器学习的区别:传统机器学习通常需要人工手动设计特征,这依赖于领域专家的经验和知识,且设计的特征往往具有局限性。而深度学习能够自动从数据中学习到复杂的特征表示。
基本原理
前向传播:数据从输入层进入,每个神经元将输入信号经过 加权求和与激活函数计算后,将结果传递给下一层神经元, 经过隐藏层的一系列计算,最终在输出层得到预测结果。
反向传播:通过计算预测结果与真实标签之间的误差,利用 梯度下降等算法反向传播误差。从输出层开始,根据误差对 每个神经元的权重进行调整,使得误差逐渐减小。在反向传 播过程中,需要计算误差对每个权重的梯度,通过不断迭代更新权重,使模型的预测结果逐渐接近真实标签。
应用领域
计算机视觉:图像分类、目标检测、语义分割
自然语言处理:机器翻译、文本生成、情感身份西、语音识别
推荐系统
发展历程(简述)
MP神经元模型->Hebb(调整链接权重)->感知机(对线性可分数据有效分类,由输入层、权重、阈值、输出层构成)->Hopfiled神经网络(具有联想记忆和优化计算能力,在组合优化上出色)->BP算法(复杂的非线性映射关系)->卷积神经网络LeNet-5(在计算机视觉领域)->深度信念网络(DBN)->AlexNet(ImageNet图像识别分类)->Word2Vec(单词嵌入大规模文本数据能力)->生成对抗网络GAN能生成逼真图像、文本等)->残差网络ResBet(解决梯度消失和退化问题)->Transformer架构(采用自注意力机制)->BERT,基于Transformer的预训练语言模型->OpenAId GPT-3->...