动手学深度学习笔记1

介绍

定义:深度学习是一类基于人工神经网络的机器学习技术, 通过构建具有多个层次的神经网络模型,让计算机自动从 大量数据中学习特征和模式。它模拟人类大脑的神经元结 构,通过大量神经元之间的相互连接和信息传递,实现对 复杂数据的学习和理解。

Tips:与传统机器学习的区别:传统机器学习通常需要人工手动设计特征,这依赖于领域专家的经验和知识,且设计的特征往往具有局限性。而深度学习能够自动从数据中学习到复杂的特征表示。

基本原理 

前向传播:数据从输入层进入,每个神经元将输入信号经过 加权求和与激活函数计算后,将结果传递给下一层神经元, 经过隐藏层的一系列计算,最终在输出层得到预测结果。

反向传播:通过计算预测结果与真实标签之间的误差,利用 梯度下降等算法反向传播误差。从输出层开始,根据误差对 每个神经元的权重进行调整,使得误差逐渐减小。在反向传 播过程中,需要计算误差对每个权重的梯度,通过不断迭代更新权重,使模型的预测结果逐渐接近真实标签。 

应用领域 

计算机视觉:图像分类、目标检测、语义分割

自然语言处理:机器翻译、文本生成、情感身份西、语音识别

推荐系统

发展历程(简述)

 MP神经元模型->Hebb(调整链接权重)->感知机(对线性可分数据有效分类,由输入层、权重、阈值、输出层构成)->Hopfiled神经网络(具有联想记忆和优化计算能力,在组合优化上出色)->BP算法(复杂的非线性映射关系)->卷积神经网络LeNet-5(在计算机视觉领域)->深度信念网络(DBN)->AlexNet(ImageNet图像识别分类)->Word2Vec(单词嵌入大规模文本数据能力)->生成对抗网络GAN能生成逼真图像、文本等)->残差网络ResBet(解决梯度消失和退化问题)->Transformer架构(采用自注意力机制)->BERT,基于Transformer的预训练语言模型->OpenAId GPT-3->...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值