XML格式转为map格式

本文介绍了一种将HTTP请求中的XML格式数据转换为Map格式的方法,使用了SAXReader进行XML解析,适用于Java环境下处理XML数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/**    
 * XML格式转为map格式     
 * @param request    
 * @return     
 */    
    public static Map<String , String> xmlToMap(HttpServletRequest request){                
           Map<String ,String> map = new HashMap<String , String>();        
           try {            
               InputStream inputStream =null;
               inputStream = request.getInputStream();
               SAXReader reader = new SAXReader();
               Document doc = reader.read(inputStream);
               Element rootElement = doc.getRootElement();
               List<Element> elements = rootElement.elements();
               for (Element el:elements) {
                   map.put(el.getName() , el.getText());
               }
               inputStream.close();
               return map ;
           } catch (Exception e) {
               e.printStackTrace();
               return null ;
           }

 

### XML标注文件转换为YOLO格式 在目标检测任务中,Pascal VOC 数据集通常使用 XML 格式存储标注信息,而 YOLO(You Only Look Once)模型则要求使用 TXT 文件格式来存储标签信息。为了将 XML 格式的标注文件转换为 YOLO 格式,需要进行以下步骤: #### 1. 解析 XML 文件 XML 文件中包含了图像的宽度、高度、目标对象的类别以及边界框的坐标。这些信息需要被提取出来,并转换为 YOLO 所需的格式XML 文件的结构通常如下所示: ```xml <annotation> <folder>images</folder> <filename>image1.jpg</filename> <size> <width>640</width> <height>480</height> <depth>3</depth> </size> <object> <name>car</name> <bndbox> <xmin>100</xmin> <ymin>120</ymin> <xmax>200</xmax> <ymax>220</ymax> </bndbox> </object> </annotation> ``` #### 2. 计算归一化坐标 YOLO 格式要求边界框的坐标是相对于图像宽度和高度的归一化值。具体来说,YOLO 标签文件的每一行包含五个部分:类别标签序号、边界框的中心点 X 坐标、Y 坐标、边界框的宽度和高度,所有这些值都是相对于图像的宽度和高度进行归一化处理的。 假设图像的宽度为 `img_width`,高度为 `img_height`,边界框的左上角坐标为 `(xmin, ymin)`,右下角坐标为 `(xmax, ymax)`,则边界框的中心点坐标 `(x_center, y_center)` 和宽度 `width`、高度 `height` 可以通过以下公式计算得到: ```python x_center = (xmin + xmax) / 2 / img_width y_center = (ymin + ymax) / 2 / img_height width = (xmax - xmin) / img_width height = (ymax - ymin) / img_height ``` #### 3. 生成 YOLO 格式的 TXT 文件 根据上述计算结果,生成 YOLO 格式的 TXT 文件。每个 TXT 文件对应一张图像,文件名与图像文件名相同,扩展名为 `.txt`。TXT 文件中的每一行对应一个目标对象,格式为: ``` class_id x_center y_center width height ``` 其中,`class_id` 是目标对象的类别标签序号,`x_center`、`y_center`、`width`、`height` 是经过归一化处理的数值。 #### 4. Python 脚本实现 以下是一个简单的 Python 脚本,用于将 XML 格式的标注文件转换为 YOLO 格式的 TXT 文件: ```python import os import xml.etree.ElementTree as ET # 定义类别标签映射 class_mapping = { 'car': 0, 'person': 1, # 添加其他类别 } def convert_voc_to_yolo(xml_file, output_dir, img_width, img_height): tree = ET.parse(xml_file) root = tree.getroot() with open(os.path.join(output_dir, os.path.splitext(os.path.basename(xml_file))[0] + '.txt'), 'w') as f: for obj in root.findall('object'): class_name = obj.find('name').text if class_name not in class_mapping: continue # 跳过未知类别 class_id = class_mapping[class_name] bndbox = obj.find('bndbox') xmin = int(bndbox.find('xmin').text) ymin = int(bndbox.find('ymin').text) xmax = int(bndbox.find('xmax').text) ymax = int(bndbox.find('ymax').text) x_center = (xmin + xmax) / 2 / img_width y_center = (ymin + ymax) / 2 / img_height width = (xmax - xmin) / img_width height = (ymax - ymin) / img_height f.write(f"{class_id} {x_center} {y_center} {width} {height}\n") # 示例调用 convert_voc_to_yolo('image1.xml', 'labels', 640, 480) ``` #### 5. 可视化标注结果 为了验证转换后的标注文件是否正确,可以使用 OpenCV 或其他图像处理库来可视化标注结果。以下是一个简单的示例,展示如何使用 OpenCV 可视化 YOLO 格式的标注信息: ```python import cv2 def visualize_yolo_annotation(image_path, annotation_path, class_names): img = cv2.imread(image_path) img_height, img_width, _ = img.shape with open(annotation_path, 'r') as f: lines = f.readlines() for line in lines: class_id, x_center, y_center, width, height = map(float, line.strip().split()) x_center = int(x_center * img_width) y_center = int(y_center * img_height) width = int(width * img_width) height = int(height * img_height) xmin = x_center - width // 2 ymin = y_center - height // 2 xmax = x_center + width // 2 ymax = y_center + height // 2 cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2) cv2.putText(img, class_names[int(class_id)], (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) cv2.imshow('Annotation Visualization', img) cv2.waitKey(0) cv2.destroyAllWindows() # 示例调用 visualize_yolo_annotation('image1.jpg', 'labels/image1.txt', ['car', 'person']) ``` 通过以上步骤,可以将 XML 格式的标注文件成功转换为 YOLO 格式的 TXT 文件,并验证其正确性[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值