图像分类与目标检测模型的构建与优化
1. 图像分类模型的训练流程
在定义好模型和数据加载器之后,就可以开始进行训练了。训练过程包含以下重要步骤:
1. 初始化模型工作流的梯度 :为每次新批次数据将梯度置为 0,避免 PyTorch 默认的梯度累积对卷积神经网络产生不良影响。
2. 前向传播获取预测结果 :根据模型当前的权重,对输入数据进行预测。初始时,权重通常使用 Xavier 或 He 初始化方法从分布中随机分配(ReLU 激活网络用 He 初始化,sigmoid 用 Xavier 初始化)。
3. 计算损失 :前向传播完成后,计算预测值与实际值之间的损失,衡量预测的偏差程度。
4. 反向传播 :根据累积的损失进行反向传播计算。
5. 更新模型权重 :反向传播损失计算完成后,优化器根据学习率和其他参数刷新并更新模型的权重。
以下是准备训练和测试数据的代码:
train_losses = []
test_losses = []
train_acc = []
test_acc = []
def train(model, device, train_loader, optimizer, epoch):
model.train()
pbar = tqdm(train_loader)
correct = 0
processed = 0
for bat