基于图像的搜索与推荐系统:实现与应用
1. 背景与问题提出
在电商领域,为了留住和吸引新客户,优质的客户服务至关重要。目前已有数千个电商平台,且未来数量还会增加,只有提供出色客户体验的平台才能长期生存。传统的基于产品名称和描述的搜索方式存在局限性,例如当用户想要搜索一件在派对上看到的蓝色带白色条纹、有黑色花卉图案和红色衣领的T恤时,用文字描述搜索会很困难,且结果往往不尽人意。
基于图像的搜索和推荐系统应运而生,它可以根据图像提供推荐,相比文本描述能捕捉到产品更多的细节,尤其在时尚品类中表现出色。
2. 方法与流程
要实现图像搜索,首先需要将图像转换为机器可分析的数字或向量。可以使用预训练模型将图像表示为向量或嵌入数据,这里选用PyTorch的ResNet18模型来完成此任务。
以下是实现基于图像搜索和推荐系统的具体步骤:
1. 导入现有图像和搜索图像 :使用OpenCV功能将图像加载到工作环境中。
2. 图像向量化 :由于Python无法直接读取JPG格式的图像,需要使用PyTorch的ResNet将图像转换为向量或嵌入。
3. 计算相似度分数 :对图像的嵌入格式应用余弦相似度,返回一个0到1之间的分数,分数越接近1表示图像越相似,越接近0表示越不相似。
4. 推荐 :根据余弦相似度矩阵,对用户输入的索引或图像的相似度分数进行排序,并返回前六个或前十个相似的项目。
下面是该流程的mermaid流程图: