自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(47)
  • 收藏
  • 关注

原创 第N11周:seq2seq翻译实战-Pytorch复现

本周是在seq2seq的基础上添加了注意力机制注意力机制就是将编码过程中的每一步与解码步骤结合之后计算出类似权重的东西,最后将解码步骤乘以权重注意力机制能很好地处理解码过程中的累计误差,从而使输出更准确。

2024-12-05 11:58:08 465

原创 第N9周:seq2seq翻译实战-Pytorch复现-小白版

本周是使用seq2seq进行文本翻译首先是经过复杂的语料处理过程然后是使用RNN构建编码和解码器接着进行数据预处理及训练函数的构建模型训练和评估本周代码复杂,综合了之前的RNN、embedded等模型。

2024-11-29 13:30:35 454

原创 第N8周:使用Word2vec实现文本分类

for idx, (text,label) in enumerate(dataloader): # text, label的顺序不能反,否则会报错本周是结合前几周的内容,使用Word2Vec进行词嵌入之后,再实现中文文本分类本次自己的错误:将for idx, (text,label) in enumerate(dataloader): 中的text、label搞反了,导致输入和模型的输出无法匹配,因此花费了很多时间。

2024-11-22 17:16:58 381

原创 第N7周:调用Gensim库训练Word2Vec模型

Word2Vec是一种词嵌入方法,是一种用于生成词向量的浅层神经网络模型与此类似,前几周的embedding也是一种词嵌入方法Word2Vec的优势是其可以成功捕捉单词之间的相似性和类比关系。

2024-11-13 16:57:01 384

原创 第N6周:中文文本分类-Pytorch实现

与上周任务相比,本周任务使用了本地数据重点在于本地中文数据的预处理过程首先需要将本地.csv使用pandas的read_csv导入其次使用jieba分词法构建中文词典其余步骤则与上周相同。

2024-11-08 16:25:25 301

原创 第N5周:Pytorch文本分类入门

文本分类常见流程为准备好原始文本:AG News是广泛用来进行文本分类的数据集文本清洗:AG News属于已经清洗好的数据集分词:torchtext库的get_tokenizer()是用于将文本数据分词的函数,它返回一个分词器函数,可以将一个字符串转换为一个单词的列表文本向量化:其实就是上周的词嵌入过程,这里使用EmbeddingBag方式进行嵌入,将离散的单词映射为固定大小的连续向量。这些向量能较好地捕捉单词间的语义关系。

2024-10-31 14:19:42 405

原创 第N4周:NLP中的文本嵌入

自定义填充函数# 定义模型print('embedding输入文本是:',text)print('embedding输入文本shape:',text.shape)print('embedding输出文本shape:',embedding_mean.shape)# 定义模型print('embedding_bag输入文本是:',text)print('embedding_bag输入文本shape:',text.shape)

2024-10-23 17:51:59 492

原创 第N2周:构建词典

本周任务:使用N1周的.txt文件构建词典

2024-10-08 08:38:01 306

原创 第N1周:one-hot编码案例

【代码】第N1周:one-hot编码案例。

2024-09-22 21:58:56 336

原创 第G9周:ACGAN理论与实战

在G8的生成器中,我使用的是之前的反卷积层,而G9中使用的是上采样方法两种方法可以达到类似效果,但上采样消耗的计算资源有限;而反卷积可以保留更多细节。

2024-09-19 22:50:56 344

原创 第G8周:ACGAN任务

从框架图上看,ACGAN就是由CGAN和SGAN结合而来因此结合的代码也可以成功运行所以,ACGAN的输入为随机噪声z+条件信息C,而最终输出为真(真1、真2…) 或假也就是SGAN中的分类器功能。

2024-09-08 22:35:29 617

原创 第G7周:Semi-Supervised GAN 理论与实战

简单来说,SGAN与普通GAN不同的点在于判别器普通的GAN的判别器只输出“真或假”而SGAN在输出真假的同时还充当分类器,将真分为真1、真2…nn.Tanh(),return imgSGAN在判别器的输出中增加了一个分支,用以对“真”进行分类# 判断真假# 判断类别由于aux_layer是多分类输出,因此激活函数使用Softmax,其输出是个概率分布,总和为1。

2024-09-05 10:54:42 693

原创 第G6周:CycleGAN实战

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊一、CycleGANCycleGAN的作用是一个物体的特征转换成另一个特征,比如将斑马转换成普通马生成结果总结:本模型训练时间太长,因此我使用了训练好的模型本模型采用了U-Net结构,结合了残差块,主要用于图像的风格迁移。

2024-08-25 12:00:21 457

原创 第G5周:Pix2Pix理论与实战

tips:如果运行过程报错,可以试着将shuffle改为False、n_cpu的线程数减少;这样就可以顺利运行了。2、画出Pix2Pix生成器网络结构。1、了解并学习Pix2Pix算法。

2024-08-22 00:29:20 407

原创 第G4周:CGAN|生成手势图像 | 可控制生成

nn.Tanh()本周代码与上周相差不大,只是增加了生成指定图像的代码。

2024-08-03 23:59:49 382 1

原创 第G3周:CGAN入门|生成手势图像

nn.Tanh()

2024-07-31 00:41:37 267

原创 第G2周:人脸图像生成(DCGAN)

1、初始化权重# 自定义权重初始化函数,作用于netG和netD# 获取当前层的类名# 如果类名中包含'Conv',即当前层是卷积层= -1:# 使用正态分布初始化权重数据,均值为0,标准差为0.02# 如果类名中包含'BatchNorm',即当前层是批归一化层= -1:# 使用正态分布初始化权重数据,均值为1,标准差为0.02# 使用常数初始化偏置项数据,值为02、定义生成器# 定义生成器# 输入为Z,经过一个转置卷积层# 输出尺寸:(ngf*8) x 4 x 4。

2024-07-22 23:44:25 772

原创 第G1周:生成对抗网络(GAN)入门

定义鉴别器## #####定义判别器 Discriminator ######## 将图片28*28展开成784,然后通过多层感知器,中间经过斜率设置为0.2的LeakyReLU激活函数,最后接sigmoid激活函数得到一个0到1之间的概率进行二分类定义生成器## #### 定义生成器 Generator ######## 输入一个100维的0~1之间的高斯分布,然后通过第一层线性变换将其映射到256维,

2024-07-15 21:25:05 227

原创 YOLOv8白皮书-第Y9周:重要模块解读

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊一、环境语言:Python3、Pytorch开发环境电脑系统:Windows 10语言环境:Python 3.9.2编译器:VS Code显卡:3060CUDA版本:Release 11.4, V11.4.48本周任务:了解yolov8重要的模块二、各模块autopad: 保持输出后张量大小不变,实质是自动计算p(就是卷积层中的填充)Conv:标准卷积模块,由卷积👉标准化👉激活层 构成Focus

2024-07-12 12:55:03 436

原创 YOLOv8白皮书-第Y8周:yolov8.yaml文件解读

相比于yolov8n和yolov8s,yolov8l的深度和宽度没有缩小同时,yolov8l的最大通道数由1024降为了512。

2024-07-01 23:27:12 435

原创 YOLOv8白皮书-第Y7周:训练自己的数据集

yolov8的使用方法与yolov5相似,最大差别是命令行运行代码不同,余不再赘述。

2024-06-22 17:40:14 536

原创 YOLOv5白皮书-第Y6周:模型改进

本周任务看似和上周差别不大,实际差别很大在前几个步骤,和上周一样,不再赘述在修改yolo5s.yaml文件时,需要特别注意如果只修改backbone,其输出的宽度和高度经过上采样之后翻倍了,因此在concat步骤就会出错将head后的第一部的Conv模块参数修改如下:这代表将宽度和高度减半,就能进行Concat的运算因此,在修改yolov5s.yaml时,不仅需要注意通道数的变化,还需要注意宽度、高度的变化。

2024-06-19 21:05:40 1726

原创 YOLOv5白皮书-第Y5周:yolo.py文件解读

本周对C3的修改与上周相同,并将修改后的模块用做单独的C2首先在common.py文件中修改C2的具体代码其次在yolo.py中添加C2名,使程序能知道C2最后在yolov5s.yaml中将C2添加在第2层与第3层之间。

2024-06-03 20:23:25 1581

原创 YOLOv5白皮书-第Y4周:common.py文件解读

本周对C3的修改其实就是去掉了concat之后的一层卷积层需要对YOLOV5的模型结构进行修改时,就在common.py文件中修改。

2024-05-27 22:32:01 366

原创 YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读

【代码】YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读。

2024-05-22 00:58:57 375

原创 YOLOv5白皮书-第Y2周:训练自己的数据集

本周任务使用与上周一样的模型,区别是训练自己的数据重点在训练集验证集的划分,以及需修改代码中文件的路径。

2024-05-12 22:23:04 308

原创 YOLOv5白皮书-第Y1周:调用官方权重进行检测

本节课的目的是顺畅地调用Yolov5进行检测,并无模型的代码操作。

2024-04-30 20:58:35 234

原创 第R3周:天气预测

本周模型与上周模型一致,都是LSTM,区别是天气预测数据集时间步更长经过多次模型结构的探索,包括LSTM层数,最终准确率在78%左右本周新增了探索式分析,不过因为之前我学习过探索式分析,因此我没有放上这部分内容。

2024-04-24 19:38:33 348

原创 Pytorch实现:LSTM-火灾温度预测

与RNN相比,LSTM的pytorch代码是将nn.RNN()变为了,nn.LSTM(),参数没有变化从原理上讲,LSTM是RNN的进阶版,LSTM增加了多个状态输入门输入靠近记忆单元的信息以及原始信息遗忘门用来遗忘不需要的信息输出门用来输出传递到下一单元的信息LSTM相比其RNN可以记忆更长远的信息;并且可以有效解决梯度爆炸问题我的输出模型预测结果在开始使较准确,到后面开始出现较大的偏差;比较K同学的代码之后,发现可能是模型的隐藏层大小设置的太小的缘故。

2024-04-16 20:15:17 266

原创 第R1周:RNN-心脏病预测

我使用了pytorch构建模型,在数据预处理部分中,需将数据封装到DataLoader中去RNN模型有时间步的概念,在本数据集中,每一列为一个时间步,所以共有13个时间步每个时间步的输入都包含了上一个时间步的输出。

2024-04-09 20:33:35 374

原创 第J9周:Inception v3算法实战与解析

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客>- **🍖 原作者:K同学啊 | 接辅导、项目定制前期工作语言环境:Python3.9.18编译器:Jupyter Lab深度学习环境:Pytorch 1.12.11.设置GPUimport torchimport torch.nn as nnimport torchvisionfrom torchvision import transforms, datasetsimport os,PIL,path

2024-03-26 22:20:55 420

原创 第J8周:Inception v1算法实战与解析

Inception v1的特点是并行,简单来讲就是同时使用多个卷积核(如33、55),之后使用torch.cat方法将多个输出结果叠加并行增加了网络的深度,因为在同一层提取了不同的特征另外,在卷积核前还使用了1*1卷积核,目的是减少运算量。

2024-03-17 20:25:26 408 1

原创 第J7周:对于ResNeXt-50算法的思考

问题:如果conv_shortcut=False,那么在执行x=Add()"语句时,通道数不一致的,为什么不会报错?,之后再将conv_shortcut=False,通道数就是匹配的了。回答:这个代码没有错。因为在ResNext50整个模型中,

2024-03-13 22:08:15 235 1

原创 第J6周:ResNeXt-50实战解析

我将原tensorflow代码改完了pytorch代码本节使用了分组卷积方法,在pytorch中,在nn.Conv2d()中使用参数groups可以很容易实现分组卷积方法。

2024-03-06 22:18:49 478 1

原创 第J5周:DenseNet+SE-Net实战

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客>- **🍖 原作者:K同学啊 | 接辅导、项目定制本周任务:在DenseNet系列算法中插入SE-Net通道注意力机制,并完成猴痘病识别测试集准确率到达89%前期工作语言环境:Python3.9.18编译器:Jupyter Lab深度学习环境:Pytorch 1.12.11.设置GPUimport torchimport torch.nn as nnimport torchvisionfrom

2024-02-26 16:18:58 293 2

原创 第J4周:ResNet与DenseNet结合探索

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客>- **🍖 原作者:K同学啊 | 接辅导、项目定制本周任务:将ResNet 和 DenseNet结合探索本人选择的数据集为鸟类识别数据集前期工作语言环境:Python3.9.18编译器:Jupyter Lab深度学习环境:Pytorch 1.12.11.设置GPUimport torchimport torch.nn as nnimport torchvisionfrom torchvision i

2024-02-18 21:58:51 502

原创 第J3-1周:DenseNet算法 实现乳腺癌识别

【代码】第J3-1周:DenseNet算法 实现乳腺癌识别。

2024-01-30 22:13:59 523 1

原创 第J2周:ResNet50V2算法实战与解析

【代码】第J2周:ResNet50V2算法实战与解析。

2024-01-22 21:28:44 1161

原创 第J1周:ResNet-50算法实战与解析

残差块的作用是减少梯度爆炸,以便构造更深层的网络ConvBlock块的跳跃连接中的卷积核的作用是使输出的特征数与主干的特征数一致,这样就能相加了;而IdentityBlock的输入与输出特征数本来就是相同的,所以可以直接相加。

2024-01-16 20:50:57 653 1

原创 第P9周:YOLOv5-Backbone模块实现

【代码】第P9周:YOLOv5-Backbone模块实现。

2024-01-08 17:39:03 556

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除