基于ROS和gazebo的仿真UR5机器人零件抓取放置系统使用指南

基于ROS和gazebo的仿真UR5机器人零件抓取放置系统使用指南

系统说明

本系统是我本科毕设搭建的一个基于ROS和gazebo的仿真UR5机械臂零件抓取系统,众多功能并不完善,有些地方还有一些bug,因此仅供各位参考辅助使用。因为在开发过程中遇到很多坑,无谓地浪费了很多时间,而且中文资料比较少,比如Moveit的制动功能、Moveit从相机获取障碍信息避障等等,所以开源出来,希望能帮到各位初学者。
再次提醒:由于毕设后期本人时间不再充裕,再加上能力有限,本项目有很多不合理和错误的地方,仅供初学者辅助和参考使用

系统配置

Ubuntu 16.04+ROSkinetic

git地址

https://github.com/zzy5510/UR5-grasp-and-kinect-demo-on-gazebo

依赖项

大部分依赖包都在UR_with_Robotiq_grasp_gazebo中的depends文件夹下,但不免会缺乏一些包。解决方案可在https://blog.csdn.net/a735148617/a
ticle/details/103627811中查看。

功能介绍

ur_with_robotiq_grasp_gazebo:
该包在https://github.com/JingyuYang1997/UR_with_Robotiq_grasp_gazebo是在工作的基础上完成的。原包并没有添加gazebo_grasp_plugin插件,导致gazebo中抓住时夹爪发生抖动。

该元功能包由5个包组成,ur_desc是机器人模型描述包,meshes文件夹包含了描述kinect相机、Robotiq夹爪模型的dae和stl文件。urdf文件夹下包含了项目中使用到的urdf文件。model.urdf为使用Robitiq夹爪的机器人模型,model2.urdf为使用自创二指夹爪的机器人模型。ur_with_kinect为包含kinect相机的模型,该模型文件中用到了gazebo_grasp_plugin,可以修复夹爪在 gazebo中抖动,抓取失败等问题,该包的详细信息见https://github.com/JenniferBuehler/gazebo-pkgs。

robotiq_85_gripper为robotiq85夹爪相关仿真、驱动、通信包,但因为其为转动关节,无法确定夹爪距离和关节转角之间的关系,已被本人弃用。

urwh_moveit_config为原包含robotiq的Moveit配置包,已弃用。

confgi为包含自创二指夹爪的Moveit配置包(吐槽名字的都给我拖下去)具体配置可在config文件夹下查看。controllers.yaml记录了机器人和夹爪的controller,均为follow_joint_trajectory。sensors_3d中记录了Moveit规划场景监听的点云信息。

smart_grasping_sandbox_sample是本包的重头戏。world文件夹包含了一些gazebo世界文件,smart_grasp_sandbox.world是原版包的世界文件。launch文件夹里包含一些启动文件。scripts包含一些python写的功能节点。
demo_qt.py结合qt界面使用,qt界面发送字符串消息,该节点会订阅,根据消息作出相应的动作。
demo_add_obs.py中实现了向moveit规划场景中添加障碍物的功能,之后再控制机器人抓取零件放置到指定地点。
listen_four_move.py会监听停止话题,可以在执行任务的过程中随时根据话题进行停止。
movetrans.py会监听/arm_controller/follow_joint_trajectory/result话题,即当机器人完成一次运动时,该节点会发送“continue”,使得listen_four_move可以继续运动下去。
pcltrans.py该节点在收到点云信息后将该信息保存,之后持续不断地发送该话题。
stop_demo.py会让机器人启动后突然停止,用作测试。

grasp_msg:
一种新建的rosmsg类型,用于传递抓取位姿。

qt_test:
实现了可视化界面,可以通过启动ROS节点,发送话题,来控制机器人运动。
可以使用

rosrun qt_test qt_test

来运行。

使用方法

首先,运行

roslaunch smart_grasping_sandbox_sample main.launch 

该命令会启动gazebo。需要注意的是,该launch只是封装,具体的加载urdf模型,导入world文件,加载控制器,都是在launch_simulation中干的。
运行

roslaunch confgi planning_with_pcl.launch 

该launch文件会启动planning_execution.launch,即moveit规划器的启动文件。之后会启动pcltrans.py,具体效果就是让moveit中的点云信息固定下来,不会随着机械臂的乱跑而变化。
那么,是在哪里设置了moveit订阅的点云话题呢?在confgi/config/sensors_3d.yaml中,该yaml会被sensor_manager.launch启动。而sensor_manager.launch的启动已经包含在planning_execution.launch里了。
之后,可以运行

rosrun smart_grasping_sandbox_sample demo_add_obs.py 

来看看效果啦。

写在最后

由于时间匆忙,该项目完成度不高,依旧有很多问题存在。总之,有问题多google,国内的资料相对较少,我的很多问题都是在google和rosanswer两个平台解决的。希望能帮到你!

抓取数据集使用康奈尔数据集以及提花数据集;基于kinova机器人搭建实际抓取环境;进行机械臂的手眼标定(Eye-in-Hand);基于pybullet平台仿真实现多个目标… 卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
<think>嗯,用户想找HAL_TIM_PeriodElapsedCallback函数的定义位置用法。首先,我需要回忆一下STM32的HAL库结构。这个回调函数应该定时器中断相关,对吧?当定时器的周期到了,就会触发这个回调函数。 根据用户提供的引用资料,特别是引用[3],里面提到使用HAL_TIM_Base_Start_IT来启动定时器并开启中断,然后实现中断服务程序中的任务。所以HAL_TIM_PeriodElapsedCallback应该是在用户代码中定义的,用来处理周期性的中断事件。HAL库通常采用回调机制,用户需要自己实现这些回调函数,比如这个函数可能是在定时器更新事件时被调用。 接下来,关于定义的位置,HAL库中的弱定义应该在某个头文件或源文件中,比如stm32xx_hal_tim.h或者对应的.c文件中。用户需要在自己的代码中重新定义这个函数,覆盖弱符号。例如,在main.c或者专门的定时器处理文件中定义。 用法方面,用户需要在初始化定时器并启动中断后,编写这个回调函数的内容,比如翻转LED或者处理数据。同时要注意定时器实例的判断,如果有多个定时器的话,需要用htim的参数来选择正确的定时器。 可能用户遇到的问题是没有正确实现回调函数,或者没有启动中断。需要检查是否调用了正确的启动函数,比如HAL_TIM_Base_Start_IT而不是HAL_TIM_Base_Start,后者可能不会开启中断。 另外,用户可能需要知道如何查找HAL库中的弱定义,这通常是在HAL的源文件中,使用__weak关键字修饰。例如在stm32xx_hal_tim.c中会有这个函数的弱定义,用户在自己的代码中重新实现即可。 还需要提醒用户,中断服务函数的名字可能CubeMX生成的有关,确保中断向量表正确,以及中断优先级设置合理。如果有多个定时器,回调函数中需要通过htim->Instance来判断是哪个定时器触发的,从而执行不同的操作。 总结一下,回答应该包括回调函数的定义位置在用户代码中,需要覆盖HAL的弱定义,用法是在定时器中断发生时执行用户代码,并注意定时器实例的判断。同时提供示例代码常见问题解答,帮助用户正确使用。</think>### HAL_TIM_PeriodElapsedCallback 函数解析 #### 1. 函数定义位置 `HAL_TIM_PeriodElapsedCallback` 是STM32 HAL库中定时器更新事件(周期中断)的**弱定义回调函数**,其默认实现位于HAL库的定时器驱动文件中(例如:`stm32xx_hal_tim.c`),但用户需要在工程中**重新实现该函数**以覆盖默认的弱定义[^3]。 具体来说: - **弱定义位置**:`stm32xx_hal_tim.c`(例如`stm32h7xx_hal_tim.c`) - **用户实现位置**:用户代码中(如`main.c`或自定义的定时器处理文件) #### 2. 函数作用 当定时器的计数器溢出(或达到预设周期值)时,触发更新事件中断,此时`HAL_TIM_PeriodElapsedCallback` 会被调用,用于执行用户自定义的周期性任务,例如:LED闪烁、传感器数据采集等[^3]。 #### 3. 函数原型 ```c __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { // 默认空实现(需用户覆盖) } ``` #### 4. 使用步骤 1. **定时器初始化** 配置定时器参数(预分频系数、计数周期等),例如: ```c TIM_HandleTypeDef htim3; htim3.Instance = TIM3; htim3.Init.Prescaler = 8399; // 84MHz/(8400) = 10kHz htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 9999; // 10kHz/10000 = 1Hz HAL_TIM_Base_Init(&htim3); ``` 2. **启动定时器中断** 使用 `HAL_TIM_Base_Start_IT` 启动定时器并开启中断[^3]: ```c HAL_TIM_Base_Start_IT(&htim3); ``` 3. **实现回调函数** 在用户代码中重新定义函数: ```c void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim->Instance == TIM3) // 判断触发源 { HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); // 示例:翻转LED } } ``` #### 5. 注意事项 - 若使用多个定时器,需在回调函数中通过 `htim->Instance` 判断具体触发源[^3]。 - 必须调用 `HAL_TIM_Base_Start_IT`(而非 `HAL_TIM_Base_Start`)以启用中断功能。 - 确保中断服务函数 `TIMx_IRQHandler` 已正确关联到定时器(通常由CubeMX自动生成)。 --- ###
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值