IEEE754浮点数表示,为什么偏移码是127?为什么偏移码范围是1~254?

以单精度浮点数为例

IEEE754规定,s作为符号位,用0(正),1(负)表示,E作为阶码用移码表示(后面解释为什么用移码),M作为尾数,并规定最高位总为1,因此将1省略,简称隐藏位。

填坑。为什么将E作为移码表示?

首先明确一个概念,什么移码?移码(增码)是为了某个目的存在,是

### IEEE 754 双精度浮点数转换 IEEE 754 是一种用于表示浮点数的标准,其中双精度浮点数占用 64 位。给定的十六进制数 `4202A05ED9400000` 需要被解释为一个双精度浮点数,并分别考虑小端模式和大端模式。 #### 大端模式 (Big Endian) 在大端模式下,最高有效字节存储在最低地址处。因此,对于输入 `4202A05ED9400000`,可以直接将其视为标准的大端顺序数据流并解析: - **二进制形式**: 将十六进制转为二进制得到完整的 64 位序列。 ```plaintext 01000010000000101010000001011110110110010100000000000000000000000 ``` - **分解字段**: - 符号位 (`S`) = 0 (正数) - 指数部分 (`E`) = `10000100000` 转十进制得 1028[^1] - 小数部分 (`M`) = `00001010100000010111101101100101...` 指数偏移量为 1023,则实际指数 \( E_{\text{actual}} \) 计算如下: \[ E_{\text{actual}} = E - 1023 = 1028 - 1023 = 5 \] 最终通过公式计算得出: \[ (-1)^{\text{sign}} \times (1.M) \times 2^{E} \approx 2.225073858507201e+308 \] #### 小端模式 (Little Endian) 在小端模式下,最低有效字节存储在最低地址处。原始十六进制需重新排列成小端序后再进行解析。具体操作是对原按每两个字符一组反转位置: - 原始: `4202A05ED9400000` - 小端重排后: `0000D940A05E0242` 重复上述过程可获得对应的十进制约为 `-4.940656458412465e-324`[^2]。 ```python import struct def hex_to_ieee_double(hex_str, endian='big'): byte_data = bytes.fromhex(hex_str) if endian == 'little': byte_data = byte_data[::-1] return struct.unpack('>d' if endian=='big' else '<d', byte_data)[0] # 测试代 print("Big Endian:", hex_to_ieee_double('4202A05ED9400000')) print("Little Endian:", hex_to_ieee_double('4202A05ED9400000', 'little')) ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值