重投影误差

本文探讨了重投影误差在计算机视觉中的重要性,特别是在优化单应矩阵和投影矩阵时的作用。通过最小化重投影误差,可以提高位姿估计和SLAM中的精度。重投影误差考虑了测量误差,因此更准确。文章还提到了在摄像机定位中,当使用标准标志点时,重投影误差退化为单边变换误差,这简化了优化过程并降低了额外误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机视觉中,经常会用到重投影误差(Reprojection error)。比如在计算平面单应矩阵和投影矩阵的时候,往往会使用重投影误差来构造代价函数,然后最小化这个代价函数,以优化单应矩阵或者投影矩阵。之所以使用重投影误差,是因为它不光考虑了单应矩阵的计算误差,也考虑了图像点的测量误差,所以其精度会更高。 


 最小化重投影误差问题(Bundle Adjustment问题)---可以将位姿和三维特征点P同时优化

在SLAM中优化求解相机运动位姿时(3D-2D),会用到重投影误差:是像素坐标(观测到的投影位置)与3D点按照当前估计的位姿进行投影得到的位置相比较得到的误差。

如下图所示,我们通过特征匹配知道,观测值和  是同一个空间点的投影,的投影与观测值之间有一定的距离,也就是重投影误差。于是我们调整相机的位姿,使这个距离变小,由于这个调整需要考虑很多个点,所以最后每个点的误差通常不会精确到0。

### 绘制重投影误差的散图 要绘制重投影误差的散图,可以通过计算实际与其重新投影后的之间的欧几里得距离实现。以下是具体方法: #### 计算重投影误差 在 OpenCV 中,`cv.solvePnP()` 函数用于估计对象的姿态(旋转和平移向量)。通过该函数得到相机姿态后,可以使用 `cv.projectPoints()` 将 3D 重新投影到图像平面上。然后比较这些重新投影与原始检测的位置差异。 #### 实现代码 以下是一个完整的 Python 示例代码,展示如何计算并绘制重投影误差的散图: ```python import numpy as np import cv2 import matplotlib.pyplot as plt # 假设已知的世界坐标系中的 3D (object_points) object_points = np.array([[0, 0, 0], [1, 0, 0], [2, 0, 0]], dtype=np.float32) # 图像上的对应特征 (image_points),单位为像素 image_points = np.array([[50, 50], [150, 50], [250, 50]], dtype=np.float32) # 相机内参矩阵和畸变系数 camera_matrix = np.array([[800, 0, 320], [0, 800, 240], [0, 0, 1]], dtype=np.float32) dist_coeffs = np.zeros((4, 1)) # 使用 solvePnP 获取旋转和平移向量 ret, rvec, tvec = cv2.solvePnP(object_points, image_points, camera_matrix, dist_coeffs) # 使用 projectPoints 对 3D 进行重新投影 reprojected_points, _ = cv2.projectPoints(object_points, rvec, tvec, camera_matrix, dist_coeffs) # 提取重新投影的二维坐标 reprojected_points = reprojected_points.reshape(-1, 2).astype(np.float32) # 计算重投影误差 errors = np.linalg.norm(image_points - reprojected_points, axis=1) # 打印每一重投影误差 for i, error in enumerate(errors): print(f"Point {i}: Error = {error:.4f}") # 绘制重投影误差的散图 plt.scatter(range(len(errors)), errors, c='blue', label="Reprojection Errors") plt.title("Reprojection Errors Scatter Plot") plt.xlabel("Point Index") plt.ylabel("Error Value (pixels)") plt.legend() plt.grid(True) plt.show() ``` #### 解释 上述代码实现了以下几个功能: - **输入数据准备**:定义世界坐标系下的 3D (`object_points`) 和对应的图像平面 (`image_points`)。 - **求解外参数**:调用 `cv.solvePnP()` 来获取旋转矢量 (`rvec`) 和平移矢量 (`tvec`)。 - **重新投影**:利用 `cv.projectPoints()` 将 3D 映射回图像平面。 - **误差计算**:通过 Euclidean 距离测量原与重新投影的距离差[^1]。 - **绘图显示**:借助 Matplotlib 库生成散图可视化结果。 #### 注意事项 如果需要更精确的结果,请确保校准相机以减少镜头失真影响,并提供足够的匹配对提升姿态估算精度[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值