一、主流模型推理部署框架
ONNX Runtime
-
介绍:由微软推出,用于优化和加速机器学习推理和训练,适用于ONNX模型,是一个跨平台推理和训练机器学习加速器。
-
特点:高性能推理引擎,支持多操作系统(Windows、Linux、Mac、Android、iOS等),可利用硬件(CUDA、TensorRT、DirectML、OpenVINO等)增加性能,支持PyTorch、TensorFlow等深度学习框架的模型。
-
优缺点:优点是推理速度快,支持多平台和硬件加速;缺点是相对其他框架,可能在一些特定领域的优化上稍逊一筹。
-
应用场景:适用于需要高性能推理的机器学习应用,如图像分类、语音识别等。
NCNN
-
介绍:由腾讯开发,专为移动设备和嵌入式设备优化的轻量级高性能深度学习框架。
-
特点:轻量级、高性能,支持多种操作系统和硬件平台(Android、iOS、Linux、Windows等),提供硬件加速支持(OpenMP、Vulkan等),灵活的模型转换工具可将主流深度学习框架的模型转换为ncnn格式。
-
优缺点:优点是内存占用低,推理速度快,支持多平台和硬件加速;缺点是可能在一些复杂模型的支持上有所欠缺。