RKNN(Rockchip Neural Network)是瑞芯微(Rockchip)为其NPU(Neural Processing Unit)开发的专用神经网络模型格式及工具链,旨在优化AI模型在边缘设备上的部署与推理性能。以下从核心特性、工具链、硬件支持、部署流程及性能优势五个维度详解:
一、核心特性与模型结构
-
硬件专用性
RKNN模型专为Rockchip NPU(如RK3588、RK3566等)设计,采用静态与动态分离的格式:- 静态部分:包含网络结构、权重等固定参数,优化存储效率;
- 动态部分:定义输入/输出形状、数据类型等运行时信息,提升加载速度。
这种设计减少存储空间占用30%-50%,并加速模型加载。
-
量化与优化
支持非对称量化(INT8/FP16混合)、模型剪枝和算子融合,降低计算资源需求。例如,YOLO模型经RKNN转换后,推理速度较ONNX/TFLite提升20%-50%。
二、工具链与开发套件
-
RKNN-Toolkit2
- 模型转换:支持TensorFlow、PyTorch、ONNX等主流框架转RKNN格式,兼容Caffe、DarkNet等传统框架。
-