【YOLO】NCHW与NHWC格式区别

在深度学习领域,NCHW(Batch-Channel-Height-Width)与NHWC(Batch-Height-Width-Channel)是两种核心的数据排布格式。它们的差异直接影响模型的计算效率、内存占用和硬件适配性。以下是基于最新研究的深度解析:


一、核心定义与存储逻辑

  1. NCHW格式

    • 排列顺序​:以通道维度优先,同一通道的所有像素连续存储(如"RRRRRRGGGGGGBBBBBB")。这种格式在内存中按[N,C,H,W]顺序线性化存储,适合需要按通道独立运算的操作(如最大池化)。
    • 物理存储示例​:假设图像尺寸为2x3,通道数为3,存储顺序为:R1,R2,R3,R4,R5,R6 → G1,G2…G6 → B1,B2…B6
  2. NHWC格式

    • 排列顺序​:以空间维度优先,同一像素的不同通道值连续存储(如"RGBRGBRGB")。其物理存储按[N,H,W,C]组织,适合需要跨通道聚合的操
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值