在深度学习领域,NCHW(Batch-Channel-Height-Width)与NHWC(Batch-Height-Width-Channel)是两种核心的数据排布格式。它们的差异直接影响模型的计算效率、内存占用和硬件适配性。以下是基于最新研究的深度解析:
一、核心定义与存储逻辑
-
NCHW格式
- 排列顺序:以通道维度优先,同一通道的所有像素连续存储(如"RRRRRRGGGGGGBBBBBB")。这种格式在内存中按
[N,C,H,W]
顺序线性化存储,适合需要按通道独立运算的操作(如最大池化)。 - 物理存储示例:假设图像尺寸为2x3,通道数为3,存储顺序为:
R1,R2,R3,R4,R5,R6 → G1,G2…G6 → B1,B2…B6
。
- 排列顺序:以通道维度优先,同一通道的所有像素连续存储(如"RRRRRRGGGGGGBBBBBB")。这种格式在内存中按
-
NHWC格式
- 排列顺序:以空间维度优先,同一像素的不同通道值连续存储(如"RGBRGBRGB")。其物理存储按
[N,H,W,C]
组织,适合需要跨通道聚合的操
- 排列顺序:以空间维度优先,同一像素的不同通道值连续存储(如"RGBRGBRGB")。其物理存储按